
M A S T E R T H E S I S
intelligent systems

D E T E C T I N G H AT E S P E E C H
I N M U LT I M O D A L M E M E S
U S I N G V I S I O N - L A N G UA G E
M O D E L S

R I Z A V E L I O G L U

Faculty of Technology
Bielefeld University

supervised by

P R O F. D R . B A R B A R A H A M M E R

reviewed by

P R O F. D R . B A R B A R A H A M M E R,
J E W G E N I R O S E

april 21 , 2021

Copyright © 2021 Riza Velioglu

Licenced according to Creative Commons Attribution-ShareAlike 4.0.

http://www.latex-tutorial.com

Acknowledgments

First and foremost, I would like to thank my supervisors, Professor Barbara Hammer
and Jewgeni Rose for their valuable guidance through each stage of the process. Your
insightful feedback pushed me to improve my thinking and brought my work to a higher
level.

In addition, I would like to express my gratitude to my parents and my sister for
their wise counsel and compassion. Thank you for your unconditional love and support
under all circumstances.

I would also like to thank the Hammer Lab research group overall for their support,
especially Johannes Brinkrolf and Valerié Vaquet. Thank you for the helpful feedback.

Finally, without the help of my friends, Benjamin Griffith, Dogan Hayirli, Furkan
Arar, Kagan Dokuzoglu, and Sinan Kuscu I would not have been able to complete this
dissertation. They offered stimulating conversations as well as enjoyable distractions to
rest my mind outside of my research. This accomplishment would not have been possible
without them. Thank you.

3

Detecting Hate Speech in Multimodal Memes Using
Vision-Language Models

Abstract

Memes on the Internet are often harmless and sometimes amusing. The apparently
innocent meme, though, becomes a multimodal form of hate speech when certain kinds
of pictures, text, or variations of both are used – a hateful meme. The Hateful Memes
Challenge1 is a one-of-a-kind competition that focuses on detecting hate speech in
multimodal memes and proposes a new data collection with 10,000+ new examples of
multimodal content. We use VisualBERT, which is also known as "BERT for vision and
language," and Ensemble Learning to boost the performance. In the Hateful Memes
Challenge, our solution received an AUROC of 0.811 and an accuracy of 0.765 on the
challenge test set, placing us third out of 3,173 participants. The code is available at
https://github.com/rizavelioglu/hateful_memes-hate_detectron

1 https://www.drivendata.org/competitions/70/hateful-memes-phase-2/

iii

https://github.com/rizavelioglu/hateful_memes-hate_detectron
https://www.drivendata.org/competitions/70/hateful-memes-phase-2/

I dedicate this thesis to my parents...

iv

Declaration of Authorship

I, Riza Velioglu, declare that this thesis titled, Detecting Hate Speech in Multimodal
Memes Using Vision-Language Models and the work presented in it is my own. I confirm
that this work submitted for assessment is my own and is expressed in my own words.
Any uses made within it of the works of other authors in any form (e.g., ideas, equations,
figures, text, tables, programs) are properly acknowledged at any point of their use. A
list of the references employed is included.

v

contents

C O N T E N T S

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 2
1.3 Contributions . 3
1.4 Publications . 3

2 Foundation/Background 5
2.1 Transformers . 5

2.1.1 Self-Attention . 6
2.1.2 Multi-Head Attention . 7
2.1.3 Overall Architecture . 8

2.2 Basic Multimodal Models . 10

3 Multimodal Research 15
3.1 Modality and Multimodality . 15
3.2 Multimodal Deep Learning . 16
3.3 Multimodal Fusion . 17
3.4 Vision and Language . 17

3.4.1 Models . 18
3.4.2 Training . 19

4 Hateful Memes Challenge and Dataset 21
4.1 The Competition . 21

4.1.1 Task Formulation . 21
4.1.2 Metrics . 22

4.2 Dataset . 22
4.3 Benchmarking Multimodal Classification Models 24

4.3.1 Models . 24
4.3.2 Results . 24

5 Methodology 29
5.1 Dataset Expansion . 29
5.2 Image and Text Encoding . 32
5.3 Model – VisualBERT . 37
5.4 Training . 38

5.4.1 Pre-training . 40
5.4.2 Fine-tuning . 41
5.4.3 Classification . 42

6 Experiments and Results 43
6.1 Experimental Setup . 43
6.2 Results . 43

6.2.1 Fine-tuned models . 44

vi

contents

6.2.2 Ensemble Learning . 45
6.3 Analysis . 45

7 Conclusion 51

Bibliography 55

vii

1I N T R O D U C T I O N

The world around us is multimodal – we see things, hear sounds, read sentences, feel
textures, taste flavors and so on. Humans communicate with their environment by
integrating information and creating connections between senses across the multiple
sensory sources [6]. When a baby eats an apple, for example, she not only experiences the
taste, but also she can hear the apple crunch, see its shiny skin, and feel its smooth surface
on her skin [82]. These multiple simultaneous and time-locked stimuli, according to
psychologists, are a critical enabler of human perceptual learning about the environment.
Even when seen under drastically different circumstances, it takes just a fraction of a
second to identify an individual or an object. In 2005, [69] conducted a research on
how neurons in the human brain produce such a robust, high-level representation. They
discovered that human brain possesses multimodal neurons. Rather than any particular
visual feature, these neurons respond to clusters of abstract concepts centered around a
common high-level theme. The “Halle Berry” neuron was the most well-known of these,
that responds to photographs, drawings, or even images of the text “Halle Berry”, but
not other names.

In comparison, machine learning has historically concentrated on solving tasks with
a single modality (e.g. in computer vision, speech recognition or natural language
processing). Large, unimodal corpora containing millions of data samples, such as im-
ages (ImageNet [21]), text (BooksCorpus [117]) have been developed and studied by
research communities in these domains. A particular promising strategy for exploiting
these massive datasets is deep learning, which learns representations that map raw data
formats to convenient and compact embedding vectors. This is mostly achieved by deep
neural networks [47, 46] which minimize a suitable loss function on input-output data
pairs to learn increasingly semantic, hierarchical representations. As a result of this
paradigm, new neural network architectures have emerged which are especially effective
at distilling images [45] and text [87] into concise, meaningful representations.

Learning from unimodal data in isolation, however, is becoming an increasingly
unnatural and naive scenario, given the explosion of multimodal content. Videos are
inherently multimodal, with audio accompanying visual material. Memes are naturally
multimodal, too, images accompanied by contextual text in the form of captions. There-
fore, artificial intelligence must be able to interpret and reason about multimodal signals
to advance in understanding the world around us. In this work, we primarily focus on
two input modes: vision which is in the form of images; and written natural language
which is in the form of text.

1 .1 motivation

Memes have grown in popularity in recent years, with over 180 Million posts on various
social media sites as of 2018 [113]. While memes are mostly innocent and created for
amusement, they have also been used to generate and disseminate hate speech in toxic
cultures. Hate speech is described as “any communication that disparages a target group
of people based on some characteristic such as race, colour, ethnicity, gender, sexual
orientation, nationality, religion, or other characteristics” [61]. Large tech firms, such as
Facebook, operate sites with millions of regular users, and they are obliged to delete a

1

introduction

significant amount of content with regards to hate speech to protect their users. According
to Mike Schroepfer, Facebook’s current CTO, they took action on 9.6 million pieces of
content in the first quarter of 2020 [76] for breaching their hate speech policies. This
indicates that the amount of malicious content on the internet today can not be dealt
with by having humans reviewing every sample. Consequently, machine learning and
in particular deep learning techniques would be needed to reduce the prevalence of
online hate speech. However, hate speech detection is a difficult problem since it often
depends on context, involves world awareness, and can be subtle. It is also a significant
issue because of its ability to influence everyone in our society. Detecting hate speech
in memes is even more challenging due to multimodality. As a result, these techniques
must process content in the same manner that humans do: holistically. When viewing
a meme, a human would not think of the words and the picture separately, but rather
the combined context. Furthermore, although the visual and linguistic content of a meme
is usually neutral or humorous on their own, however, they may create a hateful meme
when combined. An example of such a case is shown in Figure 1.1. Consider the meme
in the middle which does not contain hate speech. However, replacing the image in the
meme with an image of a person, the meme becomes offensive.

There has been a surge of interest in multimodal problems since 2015 in visual ques-
tion answering [4, 33], image captioning [44, 17], speech recognition [83, 63] and beyond.
However, it is not obvious how much true multimodal reasoning and understanding are
needed to solve today’s problems. For example, language may unwittingly place strong
priors on certain datasets, resulting in exceptional results without any comprehension of
the visual material. To overcome this problem and to measure truly multimodal under-
standing and reasoning of the models, The Hateful Memes Challenge [42] is created. A
crucial characteristic of the challenge is the so-called “benign confounders” (also called
contrastive [25] or counterfactual [39] examples) which addresses the risk of exploiting
unimodal priors by models: for every hateful meme, there are alternative images or text
that flip the label to not-hateful. Figure 1.1 shows examples of benign confounders for a
meme. Such image and text confounders require multimodal reasoning to classify the
original meme and its confounders correctly. Thus, making the dataset challenging and
appropriate for testing the true multimodality of a model.

1 .2 thesis outline

The remainder of this thesis is structured as follows: In Chapter 2 we give background on
the topics required to follow the work presented in this thesis, specifically Transformer
architecture and simple multimodal model architectures. In Chapter 3, we first present
how (multi-)modality is defined in the research field and which one we adopted for our
work. Then, we explain the role of deep learning in the field and we narrow down our
focus on a specific branch, namely, vision-and-language (V&L). In Chapter 4, we give brief
information about a challenge that aims to catalyze the research in the field and analyse
the dataset proposed with the challenge in detail, as well as the benchmark models and
their results. In Chapter 5, we explain our methodology to tackle the challenge, which
received the third prize in the competition. We present the results and analyse them
in Chapter 6. Finally, Chapter 7 discusses the impact of this work as well as potential
research directions.

2

1 .3 contributions

Figure 1.1: Three memes sampled from the dataset: (a) hateful (left), (b) not-hateful (cen-
ter), and (c) another not-hateful (right). As the label flips by changing only the image, (b)
is said to be the image benign confounder of (a). Similarly, (c) is said to be the text benign
confounder of (a) as the label flips by changing only the text.

1 .3 contributions

The main contributions of this thesis can be summarized as follows:

• We present a comprehensive empirical study to tackle detecting hate speech in
multimodal memes which improves the provided benchmarks on the task.

• We open-source a multimodal model that could be used in a real-world application
as the model performs reasonably well on detecting hate speech.

1 .4 publications

The research has led to two publications: (1) where the approach is explained, as a result
of the competition, and (2) a competition report where the results of the competition are
discussed:

1. “Detecting Hate Speech in Memes Using Multimodal Deep Learning Approaches:
Prize-winning solution to Hateful Memes Challenge” [91]
Riza Velioglu, Jewgeni Rose. At NeurIPS Competitions, 2020 (Oral Presentation)

2. “The Hateful Memes Challenge: Competition Report” (soon to be published)
Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Casey A. Fitz-
patrick, Peter Bull, Greg Lipstein, Tony Nelli, Ron Zhu, Niklas Muennighoff, Riza Velioglu, Jewgeni
Rose, Phillip Lippe, Nithin Holla, Shantanu Chandra, Santhosh Rajamanickam, Georgios Antoniou,
Ekaterina Shutova, Helen Yannakoudakis, Vlad Sandulescu, Umut Ozertem, Patrick Pantel, Lucia
Specia, Devi Parikh. In Journal of Machine Learning Research (JMLR) Special Issue on
NeurIPS Competition, 2021.

3

2F O U N D AT I O N / B A C K G R O U N D

In this chapter, we give background information required to understand the work pro-
posed in this thesis. We start with explaining the Transformer architecture [90] in detail
in Section 2.1. Then, we present simple multi-modal models and illustrate their workflow
in Section 2.2.

2 .1 transformers

For sequence transduction tasks, the sequence-to-sequence (seq2seq) [87] encoder-decoder
architecture is the foundation. It simply proposes encoding the entire sequence (source)
at once and then using that encoding as a context for generating the decoded or target
sequence. In seq2seq models1 both the encoder and decoder are recurrent neural networks,
i.e. use LSTM or GRU units. Machine translation between multiple languages in text or
audio, question-answer dialogue generation, and even parsing sentences into grammar
trees are examples of transformation tasks. This is, indeed, analogous to the human
propensity to ‘listening’ a sentence (sequence) entirely before answering, whether in
a conversation, translation, or other similar tasks. However, since a single vector must
capture the entire sequence of information in the encoder-decoder architecture, it makes
retaining knowledge at the start of the series and encoding long-range dependencies
difficult. In other words, when the encoder processes the entire input sequence and
compresses the information into a context vector, it often forgets about the beginning of
the input. To solve this problem, the attention mechanism [5] was established.

Attention mechanisms are best known for their use in NLP because, as stated earlier,
attention was created to address the problem of long sequences in machine translation,

1 In academia, seq2seq models are also known as the Encoder-Decoder models.

Figure 2.1: Attention mechanism reweighs the word embeddings in such a way that the
resulting embeddings are better and have more context.

5

foundation/background

Figure 2.2: To produce the contextualized embedding for the first token, we first calculate
the dot-product between the word "bank" and all the other words in the sequence. Then,
we normalize each value, which produces the attention vector ~w1. Lastly, we calculate the
dot-product between the attention vector, ~w1, and the input sequence, V, which results
in the contexualized embedding vector ~y1. [73]

which is also a problem in many other NLP tasks. However, given the big improvement in
NLP tasks, its use extended to the computer vision [105] and further research on attention
shed a light on different attention mechanisms, e.g. Content-based attention [31], Additive
attention [5], Dot-Product attention [55], and Scaled Dot-Product attention [90]. We will
only focus on Scaled Dot-Product, which is the building block of Transformer architecture.

In Deep Learning, attention can be thought of as a vector of importance weights: to
predict or infer one element, such as a pixel in a picture or a word in a sentence, we
estimate how strongly it is associated with (or “attends to”) other elements using the
attention vector, and take the sum of their values weighted by the attention vector as
the target approximation. Figure 2.1 illustrates the idea of attention with an example.
Given the sentence "Bank of the river." we tokenize the input and replace each of them
with its corresponding word vector. But, considering the context of the word "bank"
in the sentence, its meaning should be related to coast, beach or seaside rather than a
financial institution. Current word vectors are lacking this capability and attention is
used to address this problem. Attention layer applies the ’reweighing scheme’ to word
embeddings, ~vi, such that the output, ~yi have better context.

Next, we explain the Scaled-Dot Product used in Transformers (Section 2.1.1) and
how they are combined to form a Multi-Head Attention (Section 2.1.2). Lastly, we present
the overall Transformer architecture which makes use of Scaled-Dot Product Attention
and Multi-Head Attention (Section 2.1.3).

2 .1 .1 Self-Attention

Self-Attention in NLP, also known as intra-attention, is a type of attention that can reflect
the relationships between words in a sentence. The model is able to look at other positions
in the input sequence for hints that can help to produce a better encoding for each word
in the sequence. Figure 2.2 shows an example attention mechanism that uses scaled
dot-product on our previous example sentence. Note that the general formula for the
dot-product can be written as follows:

sij = ~vi · ~vj ∀i, j ∈ {1, · · · , n} (2.1)

6

2 .1 transformers

where n is the sequence length. Or it can be written in matrix notation as follows:

S = V ·VT (2.2)

where V ∈ Rn×dk , S ∈ Rn×n, and dk is the embedding dimension. Then, we normalize
each sij ∈ R for all i, j ∈ {1, · · · , n} using a softmax function such that it holds:

n

∑
j=1

wij = 1 (2.3)

This is done for numerical and interpretability reasons. After normalization, the attention
matrix includes the information as to how much a particular token should attend to each
of the other tokens in the sequence. To inject this information, we multiply the attention
matrix W with the word embedding matrix V:

W ·V = Y (2.4)

where W ∈ Rn×n, V ∈ Rn×dk , Y ∈ Rn×dk , and dk is the embedding dimension.
Figure 2.3 shows the calculations for a different token in the same sentence but

with a different illustration. Notice that there are no learnable weights, parameters
in this mechanism. In order to apply deep learning to this mechanism, Transformer
architecture [90] introduces parameters which would be learned during training, with
the hope that the resulting embeddings would benefit from the patterns that are learned.
Also notice that all the word vectors vi ∈ V are used exactly three times in dot-product
calculations: (1) and (2) in the first dot-product (bottom-left in Figure 2.3), and (3) in the
final dot-product (middle-top in Figure 2.3). These three places are where the parameters
are inserted, as illustrated in Figure 2.4. The parameters WQ, WK, WV are learned during
training process and the matrix multiplications of VWQ, VWK, VWV are given names as
queries(Q), keys(K), values(V), respectively. These terms are normally used in database
jargon but it is advantageous to use them here as they already give an idea of the
variables. For instance, referring to Figure 2.3, to calculate ~y3 we need to calculate to
dot-product between ~v3 and all the other word vectors. In other words, we query the ~v3
and what the query returns are the keys. Then, by combining the queries and the keys,
we construct the values. Now, the output can be represented using these terms, as seen in
Figure 2.4, the output matrix Y is computed as:

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (2.5)

This attention scheme is identical to dot-product attention, except for the scaling factor

of
1√
dk

. This is required to counteract the vanishing gradient problem.

2 .1 .2 Multi-Head Attention

The multi-head attention runs through the scaled dot-product attention several times
in parallel, rather than computing it just once. The independent attention outputs are
simply concatenated and converted linearly into the expected dimensions. Multi-head
attention helps the model to simultaneously attend to details from various representation
subspaces at various locations. This can be thought of as ensembling scaled dot-product

7

foundation/background

Figure 2.3: To produce the contextualized embedding for the third word vector, ~v3, we
first calculate the dot-product between ~v3 and all the words in the sequence, V. Then, we
normalize each value, which produces the attention vector ~w3. Lastly, we calculate the
dot-product between the attention vector, ~w3, and the input sequence, V which results in
the contexualized embedding vector ~y3.

attention using the attention function. The resulting output values from each mechanism
is then concatenated and projected using a Linear layer, as depicted in Figure 2.5.

The Multi-Head Attention can be written as follows:

MultiHead(Q, K, V) = Concat(head1, · · · , headh)WO (2.6)

where headi = Attention(QWQ
i , KWK

i , VWV
i), and where the projections are parame-

ter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel .

Originally there are 8 parallel attention layers, or heads (h = 8) and the parameters
dk = dv = dmodel/h = 64.

2 .1 .3 Overall Architecture

We feed the words sequentially to the model in the case of RNNs, and each token is aware
of its order in the sequence. Multi-Head Attention, on the other hand, is permutation
invariant. That is to say, it calculates the output of each token independently, with no
regard for word order. To address this, the Transformer adds a vector called ’positional
encoding’ to each input embedding. These vectors follow a pattern that the model learns
and uses to decide the location of each word in the sequence. The positional encoding
P ∈ Rn×dk has the same dimension as the word embeddings, hence, the two can be
summed directly. The Transformer uses the sinusoidal positional encoding which is

8

2 .1 transformers

Figure 2.4: Scaled Dot-Product Attention: The input consists of queries and keys of
dimension dk, and values of dimension dv. We compute the dot products of the query (Q)
with all keys (K), divide each by

√
dk, and apply a softmax function to obtain the weights

on the values (V).

Figure 2.5: Scaled Dot-Product Attention (left) and Multi-Head Attention (right).

9

foundation/background

Figure 2.6: Sinusoidal positional encoding with n = 32 and d = 128. The value is between
-1 (black) and 1 (white) and the value 0 is gray [96].

defined as follows:

PE(i, δ) =

{
sin
(
i/100002δ

′
/d), if δ = 2δ

′

cos
(
i/100002δ

′
/d), if δ = 2δ

′
+ 1

(2.7)

where i = {1, · · · , n} is the token position and δ = {1, · · · , d} is the dimension. That
is, each dimension of the positional encoding corresponds to a sinusoid with various
wavelengths in various dimensions, ranging from 2π to 10000 · 2π. Figure 2.6 an example
of positional encoding for 32 words (rows) with an embedding size of 128 (columns).
That is, the first row would be the vector added to the embedding of the first word in the
sequence.

Figure 2.7 shows the Transformer model architecture with consists of encoder and
decoder components. Both the encoder and decoder are made up of several similar
encoder and decoders that can be stacked Nx times.

Encoder The encoder creates an attention-based representation capable of locating
a single piece of information within an infinitely vast context. The block is made up
of a stack of Nx=6 equivalent layers. Each layer has a multi-head self-attention layer
and a simple position-wise fully-connected feed-forward network. Each sub-layer has a
residual connection and a layer normalization. All the sub-layers output data of the same
dimension dmodel = 512.

Decoder The decoder block is also a stack of Nx=6 identical layers. Each layer has two
sub-layers of multi-head attention mechanism and a simple fully-connected feed-forward
network. Similarly, each sub-layer has a residual connection and layer normalization. The
first multi-head attention sub-layer is modified such that the positions can not attend to
subsequent positions, therefore, avoiding the mechanism looking into the future when
predicting the current position.

2 .2 basic multimodal models

We will discuss multi-modal deep learning in detail later in Chapter 3. In this sec-
tion, we explain the general representation of a multi-modal model for a vision-and-
language (V&L) classification task and explore simple model architectures. We address

10

2 .2 basic multimodal models

Figure 2.7: The Transformer - model architecture with encoder (left) and decoder (right)
blocks. [90]

11

foundation/background

Figure 2.8: Generic representation of a multimodal model for vision-and-language classi-
fication tasks. In mid-fusion (left), both input modes pass through their own modules
after which their features are fed to the fusion module, where the joint representation is
produced and fed to a classifier which outputs class probabilities. In late fusion (right),
class probabilities are computed per modality and the final decision is made by the fusion
module.

12

2 .2 basic multimodal models

the case of classification tasks, but any other task, e.g. regression, can be addressed in
the same way.

After processing the two input modes, e.g. vision and language, we need to somehow
combine both of the features from the two different modalities. In other words, we need
to fuse their features in some way. There are multiple methods in multimodal fusion and
the key characteristic of these models is the stage at which the features from different
modalities are merged: close to the input data (early fusion), at the decision level (late
fusion) or in between (middle fusion).

Early fusion (also known as feature-level fusion) refers to combining the information
at the level of raw features. Late fusion (also known as decision-level fusion), on the other
hand, processes each stream independently of others and then combining the output of
the two. Middle fusion is where the features from different modalities are fused in the
middle of the workflow. However, in literature, the terms early fusion and middle fusion
are used interchangeably.

Figure 2.8 illustrates the generic representation of V&L model for binary classification
task, where the task is to classify the memes (multi-modal data source) as hateful or not
hateful. Both in middle and late fusion we process both text and image input with their
respective modules, Language Module and Vision Module, respectively, which produce
the respective input’s features. In mid-fusion, these features are passed to the Fusion
Module after which the generated multimodal features are passed through a classifier to
output class probabilities. Whereas in late-fusion, processed features are directly passed
through two disjoint classifiers (weights are not shared) to output class probabilities
which are then passed to Fusion Module where the final decision is made.

Figure 2.9 shows an example for each mid-level and late fusion models. Note that
the building designs of the models are derived from the general architecture shown in
Figure 2.8. Memes are the multimodal data source with the image and the text they
contain. For Language Module (in red) we used fastText’s word embeddings which
were mapped to 300-dimensional space with the help of a feed-forward layer. For Vision
Module (in blue), images are encoded by ResNet-152 and mapped to the same vector
space as language features. In the mid-level fusion model we used one of the simplest
approach for the fusion module: concatenating both features and passing them through a
feed-forward layer. Finally, a classifier is applied to the processed multimodal features. In
the late fusion model, on the other hand, we directly pass the extracted features through
corresponding classifiers which generate class probabilities. The final decision is made by
the fusion module which simply takes the mean of the class probabilities. The mid-level
concat fusion model is implemented and is available in the GitHub repository2.

2 https://github.com/rizavelioglu/hateful_memes-hate_detectron

13

https://github.com/rizavelioglu/hateful_memes-hate_detectron

foundation/background

Figure 2.9: Mid-level concat-fusion model architecture (left) and late fusion model archi-
tecture (right).

14

3M U LT I M O D A L R E S E A R C H

"A long-term objective of artificial intelligence is to build
multimodal neural networks—AI systems that learn about
concepts in several modalities, primarily the textual and vi-
sual domains, in order to better understand the world."

— ilya sutskever[86]

In this chapter, we explain what (multi-)modality is and compare other definitions given
in the field (Section 3.1). Then, we give a quick overview of the history of multimodal
research and when it is introduced into the field of deep learning (Section 3.2). We
then briefly summarize multiple fusion methods (Section 3.3) and, lastly, we focus
on multimodal research in vision-and-language (V&L): we present the tasks, datasets,
models, and their training (Section 3.4).

3 .1 modality and multimodality

In the field of media and communication, multimodal learning refers to the concept that
various types of content and media can be used to improve the learner experience. Multi-
modal learning has the assumption that the learner can achieve a greater understanding
of a concept when different learning modes are successfully used together. But, what
exactly is a mode? A mode is a resource, something that conveys information. A mode
could be textual (language), visual (image, video), aural (speech), symbolic (shape), etc.
For example, the word "stop" denotes a term, but not necessarily a "context". When we
add color (writing the word in red), the meaning becomes more clear. But when we add
shape (putting the word "stop" in an octagon), then it represents a stop sign. Besides, the
essence, or the context of the stop sign can still be transmitted even though one of these
modes is absent or unavailable, for example, if someone is colorblind, or does not speak
the language. This is the essence of multimodal learning: different modes collaborate to
construct context, each contributing in its own unique way.

In the field of Machine Learning (ML), the terms mode and modality are used inter-
changeably and interpreted differently. For example, [7] defines multimodality as:

Our experience of the world is multimodal – we see objects, hear sounds, feel
texture, smell odors, and taste flavors. Modality refers to the way in which
something happens or is experienced.

Whereas [32] defines it as:

In the representation learning area, the word modality refers to a particular
way or mechanism of encoding information.

On the other hand, [64] argues that the former definition relies on the human per-
ceptual experience (human-centered) and the latter one focuses on the state in which
the information is encoded before being processed by an ML system (machine-centered).
They state that task-agnostic human- and machine-centered definitions fail to describe
the term multimodality for multimodal ML and they propose a task-relative definition of
(multi)modality as:

15

multimodal research

A machine learning task is multimodal when inputs or outputs are rep-
resented differently or are composed of distinct types of atomic units of
information.

They indicate that if a modality cannot be mapped unambiguously into one another
by an algorithm, it is said to be an atomic unit of information. For example, if we are
given natural images and images of text for a task, then the task is unimodal as both
of the input modes are represented as the same atomic unit of information that is pixel
values in stacks of matrices. However, if we use Optical Character Recognition (OCR) to
obtain the text from the images of text, we are left with text and natural images which
makes the task multimodal. In this work, we adopt the previously presented definition
of multimodality by [64].

3 .2 multimodal deep learning

Research in multimodal learning dates back to the 1970s. In 1976, a paper in the field of
psychology and linguistics affected computer scientists. The paper proposed the so-called
McGurk Effect [57]. It is a perceptual phenomenon that shows how hearing and vision
interact in speech perception: when the auditory component of one sound is combined
with the visual component of another sound, the illusion occurs, causing the impression
of a third sound. This study showed that one of the reasons why the speech recognition
models failed at the time was, perhaps, that the models were unimodal. Although the
demonstration of the need for multimodality led researchers to create a new field for
multimodal speech recognition (audio-visual speech recognition), multimodal learning
was not given the attention it deserved. With the Deep Learning era, from the 2010s and
on, multimodal research did not gain importance right away. First, DL achieved state-of-
the-art in single modalities where the task is unimodal. For instance, CNNs, which work
with images, achieved SoTA accuracy for unimodal CV tasks whereas Transformer-like
neural network architectures (e.g. BERT), which work with text, have played a game-
changing role in unimodal NLP tasks. Only in the past few years, multimodal research has
gained big popularity in the field. One of the few reasons for this delay, very similar to the
delay of the DL era, are (1) new large-scale multimodal datasets (e.g. COCO, Conceptual
Captions), (2) compute power where the models are trained in a parallelizable fashion,
and (3) algorithmic advances in representation learning.

Since the key reason for multimodality is to use multiple information from different
modalities to have a better representation, one could assume that adding more modalities
would yield in a better performance. This may not necessarily hold under some conditions.
A study [94] showed that in practice the best unimodal network performs better for video
classifications. They identify two causes for this performance drop: first, multimodal
networks are prone to overfitting. Second, training different modalities jointly with a
single optimization strategy is not optimal because different modalities could overfit and
generalize at different rates. They address these problems with a technique that weighs
the individual modalities’ loss and the joint loss. As the paper indicates, for some tasks
or some dataset a single modality might be sufficient, however, for some other task or a
dataset1 multimodality is required. The key factor to achieve success in multimodal deep
learning is how the information from different modalities are combined, in other words,
how the features from different input modes are fused.

1 One such dataset is the Hateful Memes Dataset which is specifically built for testing the true multimodality,
which we will discuss in Chapter 5.

16

3 .3 multimodal fusion

3 .3 multimodal fusion

The goal of multimodal learning is to achieve a more robust, performant model using
different modalities. While the features2 of various modalities may have redundant
information, for some tasks it might be complementary to use different modalities.
First, learning from multimodal sources allows capturing the correspondences between
modalities and a deeper understanding of natural phenomena. Second, having access
to multiple modalities enables us to capture complementary information that is not
visible in either of the modalities alone. Third, even if one of the modalities is absent, a
multimodal system will still function. For example, identifying emotions from a visual
signal when the individual is not speaking [19], also recall the ’stop sign’ example
presented in Section 3.1. The crucial factor to form multimodality is to integrate the
features of modalities meaningfully. Multimodal fusion, in technical terms, is the process
of combining data from several modalities and is one of the most studied aspects of
multimodal machine learning, with works dating to 1980s [111].

As discussed briefly in Section 2.2 and illustrated in Figure 2.8, the vast majority
of multimodal fusion has been done using early (i.e. feature-based), late (i.e. decision-
based), and hybrid fusion approaches. Early fusion combines features as soon as they
are extracted, mostly by concatenating the features and it has been used for product
classification [112]. Late fusion, on the other hand, comprises integration after each of
the modalities has made a decision. The decision is done by a fusing mechanism such
as voting schemes [59], averaging [79]. One drawback of late fusion is that the low-level
interaction between the modalities is discarded. Hybrid fusion seeks to combine the
benefits of both of the aforementioned approaches into a common framework. It has
been successfully used to identify multimodal speakers [100] and for large-scale video
classification [37]. Also, neural networks have been used extensively for multimodal
fusion [60, 92]. More recently, attention-based Transformer-like models gained significant
popularity. However, the research areas multimodal deep learning and multimodal fusion
are too involved for further discussion, therefore, we only focus on two modalities that
our work is based on, that is, vision and language. We guide the reader to the surveys [7,
32, 115] for an in-depth analysis on multimodal learning and fusion.

3 .4 vision and language

Significant advances in image processing and language understanding attracted sub-
stantial attention in the past few years based on the rapid development of deep learn-
ing algorithms. Recent years have seen considerable improvement in V&L tasks, with
CNN and RNN fusion-based models increasingly improving the state-of-the-art on
benchmarks. The tasks include visual-and-language navigation [3], Visual Question
Answering (VQA) [1, 26], visual-based referred expression understanding and phrase
localization [40, 110, 68], image and video captioning [38, 93, 36, 104, 62, 108], text-to-
image generation [107, 74, 106]. In all of these tasks, we have a multimodal data source
that provides image and text. As presented in Section 2.2 in Figure 2.8, we have memes
as the multimodal data source and both modalities are processed individually to extract
features, or embeddings, or a distributed representation. A distributed representation
is a vector that distributes information related to a concept with several components,
meaning that elements can be tuned separately to allow for the efficient encoding of more

2 Following [8] we use the term feature and representation interchangeably.

17

multimodal research

concepts in a comparatively low-dimensional space [9]. Symbolic representations, such
as one-hot encoding, may be compared to such representations. The term "embedding" is
used in deep learning to describe a mapping from a single-hot vector describing a word
or image category to a distributed representation of real-valued numbers.

Text embeddings can be acquired from a Language Model (LM) that uses the chain
rule for predicting the probability of a text sequence [9]. RNN based LMs (e.g. LSTM,
GRU) have been used extensively for text embeddings. However, self-attention-based
architectures, especially Transformers [90], have emerged as the model of choice in NLP.
Pre-training on a large text corpus and then fine-tuning on a smaller task-specific dataset
is the dominant method as introduced with BERT [22], which we will explain in detail
in Section 5.2.

In computer vision, however, CNN architectures remain dominant and the image em-
beddings can be acquired from final layers of models like AlexNet [45], GoogLeNet [88],
and ResNet [34] which won the ImageNet Large Scale Visual Recognition Competition
for image classification in 2012, 2014, and 2015, respectively. Alternatively, object detection
models may be used to extract visual embeddings which provide more precise semantic
relationships with the associated labels from selected regions. Such models are known as
the R-CNN family: Region-based CNN (R-CNN)[28], Fast R-CNN [27], Faster R-CNN [75],
and Mask R-CNN [35]. Most recently, the success of Transformer in NLP inspired the
researchers in computer vision: they apply a regular Transformer directly to images,
with the fewest possible changes. The so-called Vision Transformer (ViT) [23] divides
an image into patches and the linear embeddings of those patches are passed as input
to a Transformer, as it is normally done with tokens (words) in an NLP application.
ViT approaches or beats state of the art on multiple image classification tasks. Pyramid
Vision Transformer (PVT) [95] broaden the scope and the impact of ViT by overcoming
the difficulties of porting Transformer to various dense prediction tasks. Another model
for dense prediction tasks is the Dense Vision Transformers (DVT) [72] where using a
convolutional decoder, they combine tokens from different stages of the vision trans-
former into image-like representations at various resolutions and gradually combine
them into full-resolution predictions. The Swin Transformer [52] is a new computer
vision backbone that can be used for a variety of tasks. It uses a hierarchical Trans-
former whose representation is computed using a shifted windowing mechanism that
restricts self-attention computation to non-overlapping local windows while still enabling
cross-window communication. Convolutional Vision Transformer (CvT) [98] introduces
convolutions for ViT to get the best of both approaches.

3 .4 .1 Models

Two major categories of architectures have arisen from the recent visio-linguistic pre-
training approaches: single- and dual-stream architectures. Before passing through the
transformer layers, single-stream architectures project and convert both visual and textual
embeddings into a joint embedding space. Dual-stream architectures, on the other hand,
extract the embeddings separately through different transformers and the resulting
representations are fed into cross-modal transformer (TRM) layers. We will explain in
detail the model we conducted our research in Section 5.3. Next, we give some example
models for the two mentioned architecture designs and summarize the main differences
between the models.

Examples of single-stream models are VisualBERT [49], OSCAR [50], UNITER [18].
VisualBERT is a BERT model with multiple TRM blocks. Features of both input modes’

18

3 .4 vision and language

are concatenated and passed as input to the model in a similar fashion as BERT, but
twice as wide. OSCAR makes use of the object tags detected in images as anchor points
to learn semantic alignments between images and text, which improves the learning
of cross-modal representations. They concatenate image and text features as well as
the object tags’ features, that is when the tags are removed from the input OSCAR
reduces to VisualBERT. UNITER alters the pre-training objective of the former models
and introduces a new objective.

Examples of dual-stream models are ViLBERT [54], LXMERT [89], ERNIE-ViL [109].
ViLBERT is made up of two paralleled BERT transformer streams that are linked by TRM
block layers. The visual input is handled by one stream of TRM blocks while the linguistic
input is handled by the other. LXMERT proposes a multi-component design for the
cross-modality model and uses extended pre-training tasks (i.e. RoI-feature regression
and image question answering). ERNIE-ViL introduces three new pre-training tasks
using a scene graph parser.

According to recent findings [16], the discrepancies between different “Vision and
Language BERTs” are largely due to training data and hyper-parameters. They discovered
that random initialization has a major impact on the performance of the V&L BERTs in
both pre-training and fine-tuning. They also discovered that when models are trained
with the same hyper-parameters and data, they perform similarly. In particular, some
models outperform others but they found that single- and dual-stream model families
are on par.

3 .4 .2 Training

In visio-linguistic self-supervised pre-training both images and text are used. The model
is trained to predict some hidden (masked) part of the input, whether it is a part of an
image or a word from the text, using a pre-training proxy task with a self-supervised
objective. Large image captioning datasets such as VQA 2.0 [30], COCO Captions [17],
Conceptual Captions (CC) [78] has long been a popular pre-training dataset since they
include comprehensive descriptions of images that can be used to learn task-agnostic and
generic language grounding in images. Finally, the model is fine-tuned on a downstream
task in an end-to-end fashion by replacing the pre-trained network’s head with task-
specific heads, e.g. classification head.

19

4H AT E F U L M E M E S C H A L L E N G E A N D D ATA S E T

In this chapter, we present the Hateful Memes Challenge and the competition details
in Section 4.1. Then, we do an in-depth analysis of the dataset in Section 4.2. Lastly, we
present the baseline models for unimodal models, as well as for multimodal models with
various degrees of sophistication and analyse their performance in Section 4.3.

4 .1 the competition

The competition was held based on the Hateful Memes Dataset at NeurIPS (2020). The
winners were chosen based on their results on a separate “unseen” test set, which we
will describe in Section 4.2. The “unseen” test set was created explicitly for testing
solutions using new source content, ensuring that the participants would be evaluated on
the actual task, which would in the real world contain entirely novel unseen examples,
and also to reduce the possibility of participants leveraging inadvertent biases. The
competition was divided into two phases: a first phase using the seen test set, which ran
from May to October 2020 with one submission allowed per day; and a second phase
using the unseen test set, which ran from October to November with three submissions
allowed in total. For more information about the competition, please visit the website at
https://hatefulmemeschallenge.com/.

4 .1 .1 Task Formulation

Hate speech is specifically described in the context of the challenge as follows:

A direct or indirect attack on people based on characteristics, including eth-
nicity, race, nationality, immigration status, religion, caste, sex, gender identity,
sexual orientation, and disability or disease. We define attack as violent or
dehumanizing (comparing people to non-human things, e.g. animals) speech,
statements of inferiority, and calls for exclusion or segregation. Mocking hate
crime is also considered hate speech.

In this definition, there are some notable but subtle exceptions, such as attacking indi-
viduals/famous people if the attack is not based on any of the protected characteristics.
Often, targeting hate groups (such as terrorist organizations) is not considered hate. This
implies that detecting hate speech can also necessitate subtle world knowledge. The term
parallels (but is a somewhat condensed version of) community standards on hate speech
employed by Facebook1.

The task is to classify a meme, which consists of an image and some text (the text is
pre-extracted from the image to avoid having to use optical character recognition) based
on whether or not it is hateful according to the above description.

1 https://www.facebook.com/communitystandards/hate_speech

21

https://hatefulmemeschallenge.com/
https://www.facebook.com/communitystandards/hate_speech

hateful memes challenge and dataset

Table 4.1: Hateful Memes Dataset characteristics

Total Not-hate Hate MM Hate UM Hate Img Conf Text Conf Random

Train 8500 5481 3019 1100 1919 1530 1530 2421

dev seen 500 253 247 200 47 100 100 53
dev unseen 540 340 200 200 0 170 170 0

test seen 1000 510 490 380 110 190 190 130
test unseen 2000 1250 750 750 0 625 625 0

4 .1 .2 Metrics

The primary metric for the competition is the area under the receiver operating charac-
teristic curve (AUROC) [13]. The community is encouraged to report the accuracy as a
secondary metric as it is simple to interpret and the development and test sets are not
wildly unbalanced, so accuracy provides a fair signal of model success. The competition
winners were decided based on AUROC, which provides a fine-grained sense of classifier
performance.

4 .2 dataset

The dataset construction procedure is discussed in detail in [42]. In summary, it consists
of four steps: 1) data filtering; 2) meme reconstruction; 3) hatefulness ratings; 4) benign
confounder construction. The dataset is created in such a way that it encourages and
measures truly multimodal understanding and reasoning of the models. A key point to
achieve this objective is the so-called "benign confounders" (also known as contrastive [25]
or counterfactual [39] examples) which addresses the risk of exploiting unimodal priors by
models. For instance, a system might pick up on accidental biases where appearances of
words like "black" or "white" might be strongly correlated with hate speech. To compete
with this problem, and to make the dataset extra challenging, benign confounders are
collected: for every hateful meme, there are alternative images or text that flip the label
to not-hateful. Such image and text confounders require multimodal reasoning to classify
the original meme and its confounders correctly because using just the text, or just the
image, is going to lead to poor performance. Thus, benign confounders make the dataset
challenging and appropriate for testing the true multimodality of a model.

The Hateful Memes dataset is not created for training models from scratch, but to
fine-tune and test large-scale, pre-trained multimodal models. Thus, the size of the dataset
(10K memes) is small compared to datasets that are used for pre-training such as Visual
Genome (108K) [44], COCO (200K) [17], and Conceptual Captions (3.3M) [78]. Table 4.1
shows how the dataset breaks down into various categories and the size of each set –
train, test, and development. Different sets were used in the competition: in phase 1, dev
seen and test seen were used, and in phase 2 (the prize-winning phase), dev unseen and
test unseen sets were used. One reason why different sets used in the final phase was the
possibility of reverse-engineering the labels in test seen: as the participants could make 1
submission per day, one could gather quite useful information about the labels in the set.
Thus, a new unseen set was generated. In addition, participants were allowed to make
only three submissions in the final phase, which makes the exposition of the labels very
challenging.

22

4 .2 dataset

Table 4.2: Textual lexical analysis: Most frequent non-stopwords in the combined ‘dev
seen‘ and ‘test seen‘ sets.

MM Hate UM Hate Text Conf Img Conf Not-Hate

like (0.05) people (0.14) like (0.05) like (0.06) want (0.08)
white (0.04) like (0.07) love (0.05) dishwasher(0.05) think (0.05)
people (0.04) get (0.07) people(0.05) one (0.05) get (0.05)
black (0.04) i’m (0.05) day (0.04) get (0.04) know (0.05)
get (0.04) muslims(0.05) time (0.04) i’m (0.04) people(0.05)
one (0.04) black (0.05) one (0.04) way (0.03) like (0.05)
dishwasher (0.03) white (0.05) take (0.03) white (0.03) take (0.04)
i’m (0.03) us (0.03) world (0.03) islam (0.03) always(0.04)
know (0.03) america(0.03) man (0.02) black (0.03) say (0.04)
back (0.02) go (0.03) look (0.02) gas (0.03) trump (0.04)

Table 4.3: Visual lexical analysis: Most frequent Mask-RCNN labels in the combined ‘dev
seen‘ and ‘test seen‘ sets.

MM Hate UM Hate Text Conf Img Conf Not-Hate

person (3.43) person (2.27) person (3.33) person (2.13) person (2.11)
tie (0.16) tie (0.21) tie (0.18) bird (0.16) tie (0.23)
car (0.10) cell phone (0.08) dog (0.12) chair (0.12) cup (0.12)
chair (0.10) dog (0.07) book (0.12) book (0.11) chair (0.09)
book (0.07) car (0.07) car (0.11) car (0.09) car (0.07)
dog (0.07) bird (0.06) chair (0.08) cup (0.08) cell phone (0.06)
cell phone (0.05) chair (0.05) sheep (0.05) dog (0.08) dog (0.05)
handbag (0.05) tennis racket (0.05) cell phone (0.05) bowl (0.08) bottle (0.03)
sheep (0.04) cat (0.03) bottle (0.04) sheep (0.08) bed (0.03)
bottle (0.04) cup (0.03) knife (0.04) bottle (0.07) teddy bear (0.03)

Hateful memes can be multimodal in nature, meaning that the classification relies
on both modalities, or unimodal, meaning that one modality is enough to obtain the
correct classification label. Therefore, the dataset comprises five different types of memes:
multimodal hate, where benign confounders were found for both modalities, unimodal hate,
where one or both modalities were already hateful on their own, benign image and benign
text confounders and lastly random not-hateful examples. Table 4.1 demonstrates how
the dataset is divided into different categories. Unlike the train set, which is dominated
by unimodal hate samples, dev seen and test seen sets are dominated by multimodal
contents. In addition, the label distribution is balanced. For phase 2, unseen dev and
unseen test sets were constructed such that there are no unimodal violating contents
within.

Table 4.2 shows an analysis of the lexical (word-level) statistics of the seen sets: the top
10 most-frequent words by class and their normalized frequency. We observe that certain
words used in dehumanizing based on gender (e.g. equating women with "sandwich
makers" or "dishwashers") and colors ("black" and "white") are frequent. We also observe
that these words are also frequent in the benign image confounder category which means
that these words are not necessarily directly predictive of the label. In unimodal hate
category, which is almost always text-only, we notice that the language is stronger and
often targets religious groups (e.g. "Muslims").

Interpreting the properties of the visual modality is more challenging. However, we
do the same analysis but this time for bounding box labels gathered from the object
detector (Mask R-CNN [35]). The results are shown in Table 4.3.

23

hateful memes challenge and dataset

4 .3 benchmarking multimodal classification models

The baseline scores are taken from [42] where they established the scores for diverse
unimodal and several state-of-the-art multimodal models on the task. In what follows,
we first introduce the baseline models and then present the results.

4 .3 .1 Models

A variety of models are evaluated belonging to one of the three following classes:
unimodal models, multimodal models that were unimodally pre-trained, and multimodal
models that were multimodally pre-trained. For example, when a pre-trained BERT model
and a pre-trained ResNet model are combined in some way and pre-trained using a
language model objective, then the model is unimodally pre-trained. On the other hand,
if a multimodal objective2 (e.g. visually-grounded language model objective) is used
during pre-training, then it is multimodally pre-trained.

Two image encoders are evaluated: 1) Grid features: ResNet-152 [34] convolutional
features from res-5c with average pooling, 2) Region features: features from fc6 layer of
Faster R-CNN [75] with ResNeXt-152 [103] as its backbone. The Faster R-CNN is trained
on Visual Genome [44] and features from fc6 layer are fine-tuned using the weights of
the fc7 layer (Image-Region). For the textual modality, the unimodal model is BERT
(Text BERT).

In total, ten different models are evaluated including simple fusion methods as well as
more sophisticated multimodal models. As discussed in Section 2.2, one of the simplest
approaches is to process each modality on their own and taking the mean of the unimodal
output scores (Late Fusion). Figure 4.1 shows the whole process, using ResNet-152 for
the visual modality and BERT for the textual modality. Another simple fusion method is
to concatenate both input modes’ features and training a classifier on top (Late Fusion).
Figure 4.2 shows the whole process where ResNet-152 and BERT features for vision
and language modules are used, respectively. These can be compared to more complex
multimodal methods such as supervised multimodal bi-transformers [41] using either
Image-Grid or Image-Region features (MMBT-Grid and MMBT-Region), and versions of
ViLBERT [54] and VisualBERT that were only unimodally pre-trained and not pre-trained
on multimodal data (ViLBERT and VisualBERT).

Lastly, we have models that were pre-trained on a multimodal objective before fine-
tuned on the downstream task: the official multimodally pre-trained versions of ViLBERT
(trained on Conceptual Captions [78], ViLBERT CC) and VisualBERT (trained on COCO,
VisualBERT COCO).

A grid search hyperparameter tuning over the learning rate, batch size, warm up and
number of iterations is performed and the results are averaged over three random seeds,
together with their standard deviation.

4 .3 .2 Results

The results for ’seen’ and ’unseen’ sets are shown in Table 4.4 and Table 4.5, respectively.
For seen dataset, both unimodal models, vision-only classifier (Image-Region) and

text-only classifier (Text BERT), achieve the lowest scores, as expected. Though, Text

2 also known as multi-objective

24

4 .3 benchmarking multimodal classification models

Figure 4.1: Late Fusion: input data modes pass through their respective modules and
output scores. The mean of both scores is taken and the maximum class probability is
selected.

Table 4.4: Seen dev and test set performance for baseline models.

Seen Dev Seen Test
Type Model Acc. AUROC Acc. AUROC

Human - - 84.70 82.65

Unimodal Image-Region 52.66 57.98 52.13±0.40 55.92±1.18
Text BERT 58.26 64.65 59.20±1.00 65.08±0.87

Multimodal
(Unimodal Pretraining)

Late Fusion 61.53 65.97 59.66±0.64 64.75±0.96
Concat BERT 58.60 65.25 59.13±0.78 65.79±1.09
MMBT-Grid 58.20 68.57 60.06±0.97 67.92±0.87
MMBT-Region 58.73 71.03 60.23±0.87 70.73±0.66
ViLBERT 62.20 71.13 62.30±0.46 70.45±1.16
VisualBERT 62.10 70.60 63.20±1.06 71.33±1.10

Multimodal
(Multimodal Pretraining)

ViLBERT CC 61.40 70.07 61.10±1.56 70.03±1.77
VisualBERT COCO 65.06 73.97 64.73±0.50 71.41±0.46

25

hateful memes challenge and dataset

Figure 4.2: Mid-level Concat Fusion: input data modes pass through their respective
modules after which their features are concatenated and passed through a feed-forward
layer. The multimodal features are then passed through a classifier.

Table 4.5: Unseen dev and test set performance for baseline models.

Unseen Dev Unseen Test
Type Model Acc. AUROC Acc. AUROC

Unimodal Image-Region 61.48 53.54 60.28±0.18 54.64±0.80
Text BERT 60.37 60.88 63.60±0.54 62.65±0.40

Multimodal
(Unimodal Pretraining)

Late Fusion 61.11 61.00 64.06±0.02 64.44±1.60
Concat BERT 64.81 65.42 65.90±0.82 66.28±0.66
MMBT-Grid 67.78 65.47 66.85±1.61 67.24±2.53
MMBT-Region 70.04 71.54 70.10±1.39 72.21±0.20
ViLBERT 69.26 72.73 70.86±0.70 73.39±1.32
VisualBERT 69.67 71.10 71.30±0.68 73.23±1.04

Multimodal
(Multimodal Pretraining)

ViLBERT CC 70.37 70.78 70.03±1.07 72.78±0.50
VisualBERT COCO 70.77 73.70 69.95±1.06 74.59±1.56

26

4 .3 benchmarking multimodal classification models

BERT outperforms Image-Region by a large margin, demonstrating the strength of
textual signal. In addition, Text BERT is on par with some unimodally pre-trained
multimodal models, e.g. Late Fusion. Nevertheless, multimodal models outperform
unimodal models in general. However, the difference between unimodally/multimodally
pre-trained models’ performance is relatively small, indicating that multimodal pre-
training can be improved. Another indication that there is much room for improvement
is the human accuracy: with 84.7% it is still much better than the best multimodal model,
that is VisualBERT COCO, which is pre-trained on COCO caption dataset and achieves
an AUROC score of 71.41, with an accuracy of 64.73.

For unseen dataset, Text BERT outperforms Image-Region by a smaller margin,
unlike for seen set. Multimodal models outperform unimodal models in every setting.
Moreover, the more advanced the fusion method, the better the model performs: the scores
increase from top to bottom in the table, so as the complexity of fusion methods. However,
the difference between unimodally/multimodally pre-trained models’ performance is
relatively small, similar to seen set. Moreover, the best performing model in terms of
accuracy on the unseen test set is unimodally pre-trained VisualBERT. Even though
multimodally pre-trained VisualBERT COCO outperforms the unimodally pre-trained
VisualBERT, this still indicates the need for improvement in multimodal pre-training.

Also, we see that the score for each model on unseen set is improved compared to
the scores for seen set. One reason for this performance boost may be the re-annotation
of the training set. As is to be expected with a dataset of this size and nature, some of
the examples in the training set were misclassified. Such discrepancies were mostly a
consequence of noisy examples from the initial reconstruction process and annotator
uncertainty. For the second phase of the competition, this was resolved by having the
entire dataset re-annotated with improved training and tighter guidelines.

27

5M E T H O D O L O G Y

In this chapter, we introduce the prize-winning solution to the Hateful Memes Chal-
lenge [42]. First, we explain how the challenge dataset is expanded to increase the size
of the training set and analyse thoroughly those additional data in Section 5.1. Second,
we describe how both input modes are encoded and prepared for training in Section 5.2.
Third, we present the multimodal model we used in our work in Section 5.3. Lastly, we
reveal the full training process in Section 5.4.

5 .1 dataset expansion

In recent years, there has been a trend in NLP systems to use pre-trained language
representations in increasingly flexible and task-agnostic ways for downstream tasks.
Starting with task-specific architectures using word vectors [58, 67], then RNNs with
multiple layers of representations [20, 56], and more recently pre-trained transformer
language models [90] have been fine-tuned directly, obviating the need for task-specific
architectures completely [22, 70]. This has resulted in significant progress on a wide
range of tasks such as question answering, textual alignments, and many more. Yet, a
major limitation to this approach preserved its existence, that is, the need for task-specific
dataset and task-specific fine-tuning. That is to say, to achieve strong performance on
the desired task typically requires fine-tuning on a dataset of thousands to hundreds
of thousands of examples specific to that task. One possible approach to resolving this
issue is meta-learning [15] – which in the context of the language models means that
the model learns a wide range of skills and pattern recognition abilities during training
and then uses those abilities at inference to easily adapt to or recognize the desired
task at hand. However, this is beyond the scope of this thesis, hence, readers are guided
to [15]. Furthermore, we are given such a fine-tuning dataset, that is Hateful Memes
Dataset Section 4.2, and no need to deal with the aforementioned issue. Though, we still
seek to expand the dataset to maintain stable training.

In Transfer Learning, pre-training plus fine-tuning paradigm, there are several proper-
ties fine-tuning dataset should have, but the two most important ones are the size of the
new dataset – fine-tuning set, and its similarity to the original dataset – pre-training set
where the model is pre-trained on. For the former, we expanded the dataset as more data
delivers stable learning and achieves better performance. For the latter, we chose a data
source that is similar to the pre-trained dataset in terms of the content of images. As a
result, we expanded the training dataset by 428 additional samples. Although the number
of samples added is not large, we observe a significant improvement in performance
which indicates that the added samples have good quality, which indeed conforms to
the common knowledge acquired in the field: quality matters more than the quantity
and high-quality data yields a better performing model. In fact, [80] empirically showed
that with the right pre-training and fine-tuning dataset match along with good quality,
training on a smaller dataset can easily outperform training on a larger dataset.

Unused Data from Competition

As shown in Table 4.1 there are 500 samples in seen dev and 540 samples in unseen dev.
By comparing the memes by their IDs in both set, we identified 400 overlapping samples:

29

methodology

Figure 5.1: Four samples from the Memotion Dataset. A text-only meme (top-left) which
we avoid adding because multi-modality is not required for classification of such memes.
A wrongly labeled meme (top-right): originally labeled as ’very_offensive’ but re-labeled
as not hateful. A wrongly labeled meme (bottom-left): originally labeled as ’not_offensive’
but re-labeled as hateful. A wrongly labeled meme (bottom-right): originally labeled as
’very_offensive’ but relabeled as not hateful.

|{dev_seen} ∩ {dev_unseen}| = 400, which means that there are 100 samples that are not
in dev unseen: |{dev_seen}\{dev_unseen}| = 100. There is no information given about
those left-out samples by the competition holders. Moreover, we were allowed to use
dev and train set as train set, when needed. Therefore, we added those samples to the
training set and evaluated the trained model on dev unseen.

Memotion Dataset

The Memotion Dataset [77] was released as part of the SemEval1 2020 task. The dataset
consists of 6,992 memes which are collected through Google Images searching for specific
categories. A total of 52 popular categories such as Hillary Clinton, Donald Trump, Minions,
etc. were identified. The dataset was annotated through Amazon Mechanical Turk (AMT).
AMT workers annotate the emotion class labels as Humor, Sarcasm, Offensive, Motivation and
measure the intensity with which a specific impact of a class is conveyed, along with the
overall sentiments: very negative, negative, neutral, positive, very positive. For example,
a meme can be annotated as: “negative, not_funny, very_twisted, hateful_offensive,
not_motivational”. Table 5.1 shows the number of samples for each label in the dataset.

1 SemEval is a series of international NLP research workshops to advance the current state-of-the-art in
semantic analysis.

30

5 .1 dataset expansion

Table 5.1: Characteristics of the Memotion dataset.

Category Tag Quantity

Sentiment
Analysis

very_negative 151
negative 480
neutral 2201
positive 3127
very_positive 1033

Humor

not_funny 1651
funny 2452
very_funny 2238
hilarious 651

Sarcasm

not_sarcastic 1544
general 3507
twisted_meaning 1547
very_twisted 394

Offensive

not_offensive 2713
slight_offensive 2592
very_offensive 1466
hateful_offensive 221

Motivation not_motivational 4525
motivational 2467

To ensure the annotation quality each meme was annotated five times and the final
annotations are decided based upon the majority voting scheme. Each data sample
consists of a meme and a text that was extracted from the image using Google vision
OCR. Due to the inaccuracy of OCR, some noise could be induced to the data. For that
reason, AMT workers were asked to correct the extracted text. We use the corrected text
in our experiments.

We added all the "hateful_offensive" (221 samples) and “very_offensive” (1466 sam-
ples) to the training data as hateful memes and added “not_offensive” (2713 samples)
ones as non-hateful memes. We discarded the “slight_offensive” memes because it might
confuse the model. We then fine-tuned our models on this aggregated data (hateful
memes + memotion) but the results even worsen. After an exploratory analysis of the
dataset, we discovered that some of the samples are wrongly labeled, i.e. a hateful meme
labeled not hateful and vice versa but most importantly the structure of the memes were
different than the ones in the hateful memes dataset. For example, there are memes
consisting of only text or an illustration of a sketch. One such example can be seen
in Figure 5.1, top-left. Therefore, we manually re-labeled a part of the dataset using a
script: we randomly iterate through the whole dataset and re-label the samples that are
similar to the ones in the hateful memes dataset considering the meme style and the
context of the image. Figure 5.1 shows 3 re-labeled samples which are then aggregated
to the training data. After cherry-picking and re-labeling the “similar” memes, we added
328 new memes to the training data. Both the labeling script and the re-labeled data
samples are available at the GitHub repository2.

2 https://github.com/rizavelioglu/hateful_memes-hate_detectron/tree/main/utils

31

https://github.com/rizavelioglu/hateful_memes-hate_detectron/tree/main/utils

methodology

5 .2 image and text encoding

There are a variety of methods to encode image and text. For textual input, some methods
use simple statistics to convert the input mode into a vector representation (e.g. bag-
of-words, tf-idf) while others use more complex mechanisms such as word-vectors (e.g.
Word2Vec [58], GloVe [66], fastText [11]) or Transformer encoder architecture (e.g. BERT).
Whereas for visual input, CNNs are used in some way to gather image features. Next,
we present how we encoded both input modes.

Text Encoding

Transfer learning — pre-training a neural network model on a known problem, such
as ImageNet, and then fine-tuning using the learned neural network as the basis of a
new purpose-specific model — has been demonstrated numerous times in the field of
computer vision. Those pre-trained networks have shown a groundbreaking performance
in different areas of computer vision. We have also seen a similar approach in the field
of NLP with the methods like Word2Vec, GloVe, fastText but with the release of BERT,
a beginning of a new era has been marked in the field. BERT has shown superior
performance compared to other embeddings methods like Word2Vec and GloVe and
has become state-of-the-art in many NLP tasks. The main reason for this is that the
other methods are context-independent, which means that they produce only one vector
(embedding) for each word, integrating all of the word’s different meanings into a single
vector. For example, given the two sentences: "I paid the money straight into my bank.",
and "A ferry had a crash on the east bank of the lake", the approaches like Word2Vec
and GloVe would fail to capture that the word bank has different meanings in those
two sentences and would return the same embedding for that word. BERT, on the
other hand, is context-dependent, which means that each of the two words will have a
different embedding because BERT considers the words around it while producing the
embeddings. This is thanks to the bidirectional training of the model.

In comparison to other methods, which looked at a text sequence from left-to-right or
a combination of left-to-right and right-to-left training, BERT looks at all the text input
simultaneously. The findings [22] show that bidirectionally trained language models
may provide a greater understanding of language context than single-direction language
models. The bidirectional training alleviates the previously mentioned unidirectionality
constraint by using a Masked Language Model (MLM) pre-training objective. The masked
language model masks some tokens from the input at random, with the intention of
predicting the original masked word based on its context. Unlike pre-training a left-to-
right language model, the MLM objective allows the representation to fuse the left and
right context, allowing to pre-train a deep bidirectional Transformer.

Figure 5.2 illustrates how MLM works given a text input "My dog likes playing". The
input is tokenized using WordPiece algorithm [99] which breaks a word into several
sub-words (i.e. ’playing’ to ’play’, and ’##ing’), allowing the model to represent frequently
seen sub-words as well. This is done to deal with the out-of-vocabulary (OOV) problem:
since the model is pre-trained with a fixed vocabulary, it is likely that certain tokens in a
new data will not appear in the pre-trained model’s fixed vocabulary. Those OOV words
are replaced with a special token [UNK], which stands for unknown token. Converting
all unseen tokens to [UNK], however, eliminates a lot of information from the input.
As a result, WordPiece algorithm makes it possible to represent any word as a set of
its individual characters, thereby, prevent the explosion of the [UNK] token. Besides,
we have additional special tokens: [CLS], [PAD], and [MASK]. For classification tasks,

32

5 .2 image and text encoding

Figure 5.2: Illustration of the Masked Language Modeling (MLM) objective used in
pre-training BERT for a given input.

a single vector representing the entire input sentence must be fed to a classifier. The
final hidden state corresponding to [CLS] token (first token of BERT) is used as the
aggregate sequence representation. BERT has a maximum processing capacity of 512
tokens at a time. To make up for sentences that are shorter than this maximum length,
paddings (empty tokens) are added to those sentences. The [PAD] token is used in
the original implementation to differentiate the paddings from other tokens. At last,
[MASK] token is used for the tokens that are selected at random and masked for the
MLM objective. While these modifications make it possible to perform a bidirectional
pre-trained model, the [MASK] token does not appear during fine-tuning, resulting in
a mismatch between pre-training and fine-tuning. To prevent this, [MASK] token is not
always used to replace masked words. 15% of the token positions are sampled at random
for prediction. The i-th token is substituted with (1) the [MASK] token 80% of the time,
(2) a random token 10% of the time, (3) the unchanged i-th token 10% of the time. The
output of the corresponding masked token (4-th token in Figure 5.2) is used to predict
the masked word from a class of all English words.

To boost BERT’s ability to manage multiple sentence relationships another objective,
in addition to MLM, called Next Sentence Prediction (NSP) is used to jointly pre-train
text-pair representations. In particular, when selecting sentences A and B for each pre-

33

methodology

Figure 5.3: Illustration of the Next Sentence Prediction (NSP) objective used in pre-
training BERT for a given input.

training example, 50% of the time B is the actual text sentence after A (labeled as IsNext),
and 50% of the time is a random sentence from the corpus (labeled as NotNext). As we
show in Figure 5.3, the [CLS] token is used for NSP task. Another special token [SEP] is
used to indicate the separation between the two sentences.

Based on the original implementation of Transformer [90], BERT’s model architecture
is a multi-layer bidirectional Transformer encoder. As also explained in Section 2.1,
Transformer is made up of two separate mechanisms: an encoder that reads the text input
and a decoder that generates the prediction for the task. Particularly, only the encoder
mechanism is used in BERT because the aim is to generate a language model, where
the model encodes the text input and outputs features that can be used in various NLP
tasks. BERT has two variants: BERTBASE and BERTLARGE, where the latter one is the
larger version of the former in terms of the number of TRM blocks. Figure 5.4 shows an
illustration of the two models. Furthermore, Figure 5.5 depicts the internal steps in an
encoder and illustrates the architecture of BERTBASE in 3D.

In our approach, we used BERTBASE model to encode textual input. Specifically,
we used the pre-trained BERTBASE model provided by the HuggingFace Transformers
library [97].

Image Encoding

One of the most important advances following the introduction to deep learning and
attention mechanisms to multi-modal vision and language research was the discovery of
"bottom-up" attention [2]. Unlike normal attention, which focuses on particular parts of
the visual input using ‘top-down’ linguistic inputs, bottom-up attention uses pre-trained
object detectors to recognize relevant regions based on the visual input. Consequently,
instead of using vanilla grid convolutional feature maps from Convolutional Neural

34

5 .2 image and text encoding

Figure 5.4: Illustration of two BERT models: BERTBASE and BERTLARGE, where we denote
the number of layers (i.e. Transformer blocks or TRM blocks) as L, H as hidden size, A as
the number of self-attention heads, and P as total number of parameters.

Networks (CNN), images are represented by a set of bounding box or region-based
features.

Region-Based Convolutional Neural Networks (R-CNN) are a family of machine
learning models for computer vision and specifically for object detection. The family
of R-CNNs gained a huge population and has become the most prominent models in
the field. The original purpose of R-CNN [28] is to take an input image and output a
collection of bounding boxes, each of which contained an object as well as the object’s
category (e.g. animal or human). R-CNN independently computes the features on each of
as many as two thousand regions-of-interest (ROI) (also known as ’region proposals’ [28]),
which is time-consuming. To make R-CNN faster, the training procedure is enhanced
by running the model once on the whole image, resulting in Fast R-CNN [27]. While
both R-CNN and Fast R-CNN used Selective Search [24] to come up with ROIs, Faster R-
CNN [75] incorporates the ROI generation into the model itself which speeds up the
process. Lastly, Mask R-CNN [35] extends previous versions of R-CNN to pixel-level
image segmentation. Since pixel-level segmentation involves much more fine-grained
alignment than bounding boxes, Mask R-CNN replaced ROIPooling with a new method
called "ROIAlign" such that ROIs can be precisely mapped to the regions of the image.

For every image we extract 100 boxes of 2048D region-based image features from a fc6
layer of a ResNeXT-152 based Mask R-CNN model [35], trained on Visual Genome [44]
with the attribute prediction loss following [2]. Figure 5.6 shows an example of a pro-
cessed image where the ROIs are proposed by Mask R-CNN. We project the visual
embeddings into the textual embedding space before passing them through the trans-

35

methodology

Figure 5.5: Visualization of BERTBASE in 3D (Brinne 2020) [14]

36

5 .3 model – visualbert

Figure 5.6: An example of a processed image where the regions are proposed by Mask R-
CNN. Originally 100 boxes are extracted per image but for plotting purposes only 36
boxes are shown.

former layers. We learn weights Wn ∈ RPxD to project each of the 100 image embeddings
to D-dimensional token input embedding space:

In = Wn f (img, n), (5.1)

where P = 2048, D = 768, and f (·, n) is the output of the n-th fully-connected layer in
the image encoder.

5 .3 model – visualbert

VisualBERT [49] is designed for capturing rich semantics in the image and associated text.
Due to its simplicity and flexibility, it is used as a baseline for V&L tasks including VQA
2.0 [30], VCR [114], NLVR [85], Hateful Memes Challenge [42]. VisualBERT integrates a
single-stream BERT model [22], with multiple Transformer blocks [90], and pre-trained
object proposal systems such as Faster R-CNN [75] or Mask R-CNN [35]. Particularly,
image features extracted from object proposals are treated as unordered input tokens
and fed into the model along with the text, in a similar fashion as BERT but twice as
wide. The concatenated text and image inputs are then jointly processed by multiple
Transformer layers in VisualBERT. Hence, VisualBERT is also known as the ’BERT with
vision for vision-and-language tasks’. The whole process is illustrated in Figure 5.8 which
is derived from the general architecture seen in Figure 2.8.

After concatenation of both input modes’ features, VisualBERT’s input looks like:

[CLS], l1, ..., [MASK], lM, [SEP], v1, ..., vN

Similar to BERT, li represents a textual input token, [MASK] and [SEP] represent the
masked input and separator tokens used in self-supervised pre-training, and vi represents

37

methodology

Figure 5.7: An example meme sampled from the dataset (left), and an illustration of the
model (right). Image regions’ embeddings and textual embeddings are concatenated
and processed jointly with a Transformer to allow the self-attention to discover implicit
alignments between language and vision.

an object embedding extracted from the image via object detector. This joint input is
passed through the transformer blocks and the final representation corresponding to
[CLS] token is used in downstream tasks. The BERT-like model architecture is illustrated
in Figure 5.7. Image/Text embeddings are computed by adding image region/token
embeddings, image/token positional embeddings (Position), and a specific embedding
which distinguishes the image and text embeddings (Segment).

VisualBERT is trained in a very similar fashion as BERT but the model would have to
learn to handle both language and visual input. Hence, VisualBERT is pre-trained on
COCO dataset [17] which consists of around 200K image-caption pairs. VisualBERT is
pre-trained using two visually-grounded objectives: masked language modeling with
image and caption-image alignment prediction. Both of the objectives are very similar
to objectives used while training BERT: Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). VisualBERT’s objectives extend BERT’s objectives to accom-
modate both language and visual input. The former objective is the same as MLM but
with vision: some tokens in text input are masked and the model learns to predict the
masked tokens from the rest of the text and visual context. The latter objective is also
inspired by NSP but with vision again: the model is given an image along with two
captions where one of the captions is describing the image while the other has a 50%
chance to be another corresponding caption and a 50% chance to be a randomly drawn
caption. The model then needs to distinguish the two cases.

5 .4 training

Recent advances in representation learning for natural language processing have led
to drastic improvements in text-only classification problems. While other approaches
are catalyzing the development of the task, BERT has been the most effective and
the most successful one by far. Following BERT’s success, diverse model architectures
have been proposed including multimodal ones; such as ViLBERT [54], VisualBERT [49],
LXMERT [89], VL-BERT [84], OSCAR [50], UNITER [18], and many more. All these models
have very similar training scheme: pre-training on intermediary or proxy multimodal
tasks before fine-tuning on the multimodal task at hand. Pre-training is performed on
large image captioning datasets like COCO Captions [17], Conceptual Captions [78] and

38

5 .4 training

Figure 5.8: VisualBERT: input data modes pass through their respective modules after
which their features are concatenated and passed through a Transformer. The multimodal
features are then passed through a classifier to output class probabilities.

39

methodology

then transferred to a downstream task by fine-tuning the whole architecture end-to-end.
Hence, this scheme is also known as Transfer Learning in the field of deep learning.

In this section, we explain how we leverage transfer learning: using a pre-trained
model and adapting it to multimodal meme binary classification problem. First, we
explain why we choose this specific pre-trained model and how it is trained in (Sec-
tion 5.4.1). Then, in Section 5.4.2 we present how we adapt the higher-order feature
representations in the base model to our task via fine-tuning. Lastly, we demonstrate
how the classification is performed in Section 5.4.3.

5 .4 .1 Pre-training

We use MMF [81] which provides implementation of diverse multimodal models as well
as their pre-trained weights for various datasets including Conceptual Captions [78],
COCO [17], VQA 2.0 [30], and many more. The original implementation of VisualBERT
is incorporated inside the framework ensuring no implementation differences. The
default setting has the same configuration as BERTBASE: 12 layers, a hidden size of
768, and 12 self-attention heads. The parameters of TRM layers are first initialized from
pre-trained BERTBASE weights provided by the HuggingFace Transformers library [97].
Region-based image features are extracted from fc6 layer of a ResNeXT-152 based Faster
R-CNN [75, 103] model trained on Visual Genome [44] with the attribute prediction
loss following [2]. For BERT text encoder, the pre-trained BERT base-uncased weights
provided by HuggingFace are used.

Pre-training datasets

Doing pre-training on large datasets reduces variance but increases the bias. Furthermore,
increasing the dataset size does not always improve the performance. For instance, [80]
observed that the dataset size is not the most important factor in visio-linguistic pre-
training. They state that even a smaller dataset can easily outperform pre-training on a
larger dataset when the right visual and textual domain match along with good quality
data. For this reason, we use the models that were pre-trained on the following datasets,
which we evaluate their performances by fine-tuning them on the challenge set and
evaluating on seen dev set:

COCO Captions [17] Common Objects in Context [51] is a series of natural images
from Flickr that depict everyday scenes. To advance the state-of-the-art in object detection
and segmentation, COCO was introduced with bounding boxes, segmentation masks,
and key-points for 80 common categories. COCO Captions [78] were later gathered
to supplement multimodal AI development. COCO Captions comprises 200k labeled
images, each with five captions, for a total of 1 million image-caption pairs.

Conceptual Captions [78] Conceptual Captions (CC) is a collection of 3.3 million image-
caption pairs scraped from the internet by matching images with their alternative text.
More precisely, images and their raw descriptions are harvested from the web, and
therefore represent a wider variety of styles in terms of visual content. It is worth to
mention that the whole pipeline is automated which extracts, filters, and transforms
image-caption pairs with the goal of achieving a balance of cleanliness, informativeness,
fluency, and learnability of the resulting captions.

40

5 .4 training

VQA 2.0 [30] Understanding and reasoning about a picture to answer a question is
a task of Visual Question Answering [1] (VQA). First, VQA 1.0 was released which
collected COCO images [51]. VQA 2.0 was later implemented to counteract the language-
biases caused by questions that could be answered without even looking at the picture
(for example, "What color is the banana?"). For each question, complementary images
were presented that were identical but had different responses to the same question.
VQA 2.0 comprises 1.1 million questions based on 200k COCO images and there are 10
human-annotated answers to each question.

Pre-training objective

A similar training procedure as BERT is adopted but VisualBERT would have to learn to
handle both textual and visual input with the previously stated image-caption datasets.
Following [49], VisualBERT is originally trained with two visually-grounded language
model objectives. (1) Masked language modeling with image and (2) Sentence-image
prediction. The latter one is only possible with multiple image captions, which makes it
impossible to be used with datasets like CC where there is a single caption. Therefore,
only the former objective is used in pre-training VisualBERT model on different datasets.

Masked Language Modeling (MLM) Recall that we let image regions v = {v1, · · · , vN}
and let the input words l = {l1, · · · , lM}. The objective is to reconstruct l from a cor-
rupted l̂ where some elements of text input are masked, i.e. replaced with a [MASK] token
randomly with a probability p, whereas the vectors corresponding to image regions are
not masked. Let θ be the trainable parameters. We minimize the negative log-likelihood:

LMLM(θ) = −E(l,v)∼D log Pθ(l | l̂, v) (5.2)

5 .4 .2 Fine-tuning

As previously stated, we fine-tune several pre-trained VisualBERT models to find the
best suitable pre-trained model for our task. We fine-tune the models on the Hateful
Memes training set via back-propagation [48] and use binary cross entropy loss. We
use the pre-extracted features3 provided by the competition owners where they extract
2048D region based image features from fc6 layer of a ResNeXT-152 based Faster R-CNN
model [75, 103] trained on Visual Genome [49] with the loss following [2].

We evaluate every 100 updates and report the model with the best evaluation metric
(AUROC) on the validation set (seen dev). We use the AdamW optimizer [43, 53] with
cosine decay learning rate scheduler. For learning rate, it is common to use a small value
for TRM weights that are being fine-tuned, in comparison to the randomly initialized
weights for the linear classifier that computes the class probabilities. This is because
we expect the TRM weights to be reasonably good and we do not want to distort them
too much, especially while the classifier above them trained from random initialization.
Therefore, we use a learning rate of 5e-5. We use batch size of 80 and set training
update steps to 3000 for fine-tuning. There is a Jupyter notebook available in the GitHub
repository4 which includes all the code related to benchmarks. The results will be
presented in Section 6.2.

3 Available at https://dl.fbaipublicfiles.com/mmf/data/datasets/hateful_memes/defaults/
features/features.tar.gz

4 https://github.com/rizavelioglu/hateful_memes-hate_detectron

41

https://dl.fbaipublicfiles.com/mmf/data/datasets/hateful_memes/defaults/features/features.tar.gz
https://dl.fbaipublicfiles.com/mmf/data/datasets/hateful_memes/defaults/features/features.tar.gz
https://github.com/rizavelioglu/hateful_memes-hate_detectron

methodology

Downstream datasets

In addition to the pre-trained models, we also evaluate other models which are already
fine-tuned on a downstream dataset. For example, pre-training a VisualBERT model
on COCO and fine-tuning on a downstream dataset, which is then fine-tuned on the
hateful memes dataset later. As the content of each dataset differs from one another, we
hypothesize that a model that is trained on multiple datasets could leverage the diverse
textual and visual domain available in the datasets used. Therefore, the model could
learn more general features and could generalize and transfer its knowledge better.

SNLI-VE [102] The SNLI-VE (SNLI Visual Entailment) dataset is built on top of
SNLI [12] and Flickr30K [68] datasets. SNLI-VE is proposed for the Visual Entailment
(VE) task [101] which aims to solve reasoning about the relationship between an image
premise Pimage and a text hypothesis Htext. Given an image as premise and a natural
language sentence as hypothesis, the VE task involves classifying whether the state-
ment is true (entailment), false (contradiction) or neutral with respect to the relationship
conveyed by the (Pimage, Htext). The dataset contains 550K image/statement pairs and
evaluation is done using classification accuracy.

VizWiz [33] The VizWiz dataset consists of over 31K images collected by blind people
who took a photo with their phone and reported a spoken question about it to address
some of their daily needs. Each of the 32K questions are annotated by sighted human-
annotators having 10 answers per visual question. The question-answering task from
VizWiz is used as a downstream task and the VQA accuracy is used as the evaluation
metric.

VQA 2.0 [30] We presented this dataset earlier as pre-training dataset, but it can also be
used as a downstream VQA task in which for a given image and question pair (I, Q), an
approach must predict an answer A, usually from a fixed-vocabulary. The VQA Accuracy
metric5 is used in the assessment.

5 .4 .3 Classification

The area under the receiver operating characteristic curve (ROC AUC) [13] has been
selected as the measure of performance, which is given by the following formula:

AUROC =
∫ 1

x=0
TPR(FPR−1(x))dx (5.3)

The labels indicating whether a meme is hateful or not-hateful are provided within the
dataset, hence the task can be cast as a binary classification problem.

As illustrated in Figure 5.8, the input to the transformer is both the language and
vision features. Then, we use the first output of the final layer (the vector corresponding
to [CLS] token) as the input to a classification layer:

clf(x) = Wx + b , W ∈ RDxC (5.4)

where D is the transformer dimensionality and C is the number of classes (also see Fig-
ure 5.7). We apply a softmax on the logits and train with binary cross-entropy loss.

5 For more details see: https://visualqa.org/evaluation.html

42

https://visualqa.org/evaluation.html

6E X P E R I M E N T S A N D R E S U LT S

In this chapter we first present the experimental setup, the hardware specifications used
in the research environment, the setup for training in Section 6.1. Then we present
the results in Section 6.2 and do a detailed analysis, both quantitative and qualitative
in Section 6.3.

6 .1 experimental setup

We train our models with 4 NVIDIA RTX 2080Ti GPUs with 11GB memory each. We use
the MMF1 framework (also known as Pythia) [81] for our experiments that is based on
PyTorch [65]. The framework provides several state-of-the-art model implementations
as well as pre-trained models. We use the VisualBERT model that is pre-trained on
Conceptual Captions [78]. We extract 2048D region based image features (100 regions
per image) from fc6 layer of a ResNeXT-152 based Mask R-CNN model [35], trained
on Visual Genome [44] with the attribute prediction loss following [2]. We fine-tune the
model on the aggregated (Hateful Memes + Memotion) training set via back-propagation
[48] and use binary cross entropy loss. We evaluate every 50 updates and report the
model with the best evaluation metric on the validation set. We use the AdamW optimizer
[43], [53] with cosine decay learning rate scheduler. We set the parameters of AdamW as
follows: ε as 1e-8 and (β1, β2) as (0.9, 0.999). We use a learning rate of 5e-5, batch size of
80 and set training update steps to 1000 for fine-tuning. The value of p, pv, and pl are set
to follow masking probabilities as in original BERT paper [22].

We conducted an extensive hyper-parameter search and used the best configuration
for the parameters including learning rate, warmup steps, warmup type, warmup factor,
and warmup iterations. We evaluated the models with different hyper-parameters during
the grid search and the top-27 models, according to their AUROC scores, are ensembled .
Finally, the majority voting technique is applied to finalize the classification.

All the code is available at GitHub2. A Jupyter notebook is ready for use in the
repository which loads the fine-tuned models and generates the predictions on a free,
serverless Jupyter notebook environment provided by Google Colaboratory3. Another
notebook is also provided in the repository where the whole pipeline –loading pre-
trained models and fine-tuning– is documented in an end-to-end fashion with which the
results could be reproduced.

6 .2 results

In this section, we present our findings, results for various fine-tuned models in Sec-
tion 6.2.1. Then, we show the results of ensemble learning in Section 6.2.2.

1 MMF: a framework for vision-and-language multimodal research from Facebook AI Research (FAIR).
Available at https://github.com/facebookresearch/mmf

2 https://github.com/rizavelioglu/hateful_memes-hate_detectron
3 Google Colab: a free cloud service hosted by Google. Available at: https://colab.research.google.com/

43

https://github.com/facebookresearch/mmf
https://github.com/rizavelioglu/hateful_memes-hate_detectron
https://colab.research.google.com/

experiments and results

Table 6.1: Performance of different pre-trained VisualBERT models on seen dev set after
fine-tuned on the hateful memes training set with pre-extracted default features.

ID Pre-trained on Fine-tuned on AUROC

1 CC_full - 73.58
2 CC_fifty - 73.21
3 CC_ten - 72.98

4 VQA2_full - 72.68
5 VQA2_fifty - 72.07
6 VQA2_ten - 67.33
7 VQA2_full VizWiz 68.74

8 COCO_full - 72.88
9 COCO_full VQA2 71.55

10 COCO_full Visual Entailment 73.18

6 .2 .1 Fine-tuned models

The results are shown in Table 6.1 where the scores are averaged over three random
seeds. We have models pre-trained on CC, VQA 2.0, COCO, and on different proportions
of them such as; fifty or ten percent. In other words, we clip the number of samples
present in VQA 2.0 and CC to be the same as COCO for the sake of fair comparison.
The chosen samples are randomly selected. In addition, as CC is significantly larger
than COCO, we also experiment with various sizes of CC ranging from 10% (CC_ten),
which is roughly the same size as COCO, to all of CC (CC_full). For example, the model
with ID=2 (CC_fifty) is pre-trained on the half of CC and achieves an AUROC score
of 73.21. Similarly, the model with ID=6 (VQA2_ten) is pre-trained on 10% of VQA 2.0
and achieves 67.33. Correspondingly, we note the models fine-tuned on downstream
tasks with ID ∈ {7, 9, 10}. We discover that our hypothesis is proven to be wrong:
the models that are further trained on downstream tasks not necessarily perform better.
Consider the model with ID=7 that achieved 68.74 AUROC and comparing it with its
counterpart model (ID=4) which achieved a score of 72.68, it performed even worse.

Another example is the model fine-tuned on VQA 2.0 (ID=9) which consistently
perform at-par with COCO_full (ID=8) but still rejecting our hypothesis. However,
this issue does not persist for the model fine-tuned on VE (ID=10): we inspect that
the model achieves a slightly higher score compared to COCO_full (ID=8), indicating
that our hypothesis may hold under certain settings. To find out under which settings
visio-linguistic representations are scalable, transferable, and task-agnostic, [80] made
experiments with various settings and analyzed the empirical trends. They showed
that if there is a discrepancy between the domain of pre-training and the downstream
dataset, pre-training may not always function and that using in-domain pre-training
datasets is preferable to using out-of-domain datasets. In this respect, we would expect
that the models pre-trained on CC to perform better considering the diverse styles in
terms of the visual content. The results meet our expectation: the models trained on
different portions of CC with ID ∈ {1, 2, 3} perform perceivably better than all the
other models. Therefore, we conducted our research on CC_full(ID=1) which received
the highest AUROC score among the others.

44

6 .3 analysis

6 .2 .2 Ensemble Learning

The role of supervised learning algorithms is to search through a hypothesis space [10]
for a suitable hypothesis that will allow good predictions for a specific problem. Even
if the hypothesis space includes hypotheses that are well-suited to a specific problem,
finding a good one can be difficult. To form a stronger hypothesis, ensembles combine
several hypotheses. The term “ensemble” refers to approaches that use the same base
learner to produce several hypotheses. In other words, ensemble learning aims to enhance
generalizability and robustness over a single model by combining the predictions of
multiple base models. Specifically, we use the Majority Voting technique (also known
as Hard Voting or Voting Classifier4), which combines various classifiers and predicts
class labels using a majority vote. The resulting classifier is often used to balance out the
shortcomings of several equally well-performing models. As a result, it performs better
than any other model used in the ensemble.

On the dev unseen set, a grid search hyperparameter tuning over the learning rate,
warmup factor, warmup iterations, warmup steps, and scheduler type is performed,
which yielded multiple models with different AUROC scores. We set the number of
updates to 2000 and evaluated every 50 steps. The base model is VisualBERT pre-trained
on CC (previously mentioned CC_full in Table 6.1), and fine-tuning is done using our
own extracted image features.

The top 27 models are chosen for ensemble learning after they are sorted by AUROC
score (the number of models is chosen arbitrarily). Table 6.2 shows all the models in the
ensemble with their hyper-parameter settings. The best model (ID=60) achieves 75.21
AUROC score where the worst model (ID=26) receives 73.68.

Predictions are collected from each of the models in the ensemble and the majority
voting scheme is used, with the majority voted class determining the class of a data
point. Furthermore, the probability of a data point being assigned to a class must be
calculated to measure AUROC: if the majority voted for class 1 (hateful), the likelihood is
the highest of all 27 models, and the lowest if the majority voted for class 0 (not hateful).
Table 6.4 shows how the majority voting technique is applied. All the code, as well as the
top-27 models, are available in the GitHub repository.

Finally, we evaluate our models by comparing them to the baseline approaches:
Table 6.3 shows the results. Note that baseline models are fine-tuned using the image
features provided by the competition holders which were extracted using Faster R-CNN,
whereas our models are fine-tuned using our own image features extracted using Mask
R-CNN. Also note that there is no entry for VisualBERT CCID=60 for unseen test set. This
is because participants were allowed to make maximum of three submissions and we
did not use this specific model for submission. Next, in Section 6.3 we do an in-depth
analysis and compare the results.

6 .3 analysis

Table 6.3 shows both baseline and our models’ performances where our two models
are the best performing model in the ensemble (VisualBERT CCID=60) and the ensemble
itself (VisualBERT CCensemble). Our models improve the baselines significantly in both

4 Implementation of Voting Classifier from scikit-learn: https://scikit-learn.org/stable/modules/
ensemble.html#voting-classifier

45

https://scikit-learn.org/stable/modules/ensemble.html#voting-classifier
https://scikit-learn.org/stable/modules/ensemble.html#voting-classifier

experiments and results

Table 6.2: The hyper-parameter settings for the best 27 models according to AUROC
score on dev unseen after the grid search. The base model is VisualBERT pre-trained on
CC with our image features.

ID lr
ratio

warmup
factor

warmup
iterations

warmup
steps

scheduler
type AUROC Acc. best

iteration

60 0.3 0.2 1000 2000 linear 0.7521 0.7093 750
1 0.3 0.3 1000 250 cosine 0.7516 0.6963 550
42 0.7 0.1 100 50 cosine 0.7502 0.7074 550
9 0.3 0.7 1000 500 cosine 0.75 0.7074 1000
0 0.6 0.3 1000 500 cosine 0.7497 0.7167 1000
57 0.6 0.3 1000 500 linear 0.7449 0.7037 700
23 0.3 0.05 500 250 cosine 0.7447 0.7037 550
20 0.6 0.3 1000 500 cosine 0.7444 0.7019 700
28 0.3 0.2 250 250 cosine 0.7437 0.7093 800
24 0.3 0.05 1000 250 cosine 0.7432 0.7019 450
27 0.3 0.1 1000 250 cosine 0.7427 0.7111 600
15 0.6 0.5 1000 250 cosine 0.7419 0.7 500
6 0.3 0.7 1000 250 linear 0.7402 0.7185 1200
22 0.3 0.05 250 250 cosine 0.7402 0.6833 550
34 0.3 0.1 250 250 linear 0.7402 0.7111 550
5 0.3 0.5 1000 250 linear 0.7401 0.6926 700
14 0.6 0.3 1000 250 cosine 0.7396 0.7111 450
41 0.3 0.05 500 500 cosine 0.7396 0.7037 450
43 0.7 0.1 250 50 cosine 0.7391 0.6963 650
52 0.7 0.3 250 50 linear 0.7391 0.6963 450
54 0.6 0.3 1000 250 cosine 0.7386 0.6926 550
16 0.6 0.7 1000 250 cosine 0.7381 0.7 500
31 0.3 0.05 250 250 linear 0.7381 0.7111 700
10 0.3 0.3 1000 500 linear 0.7378 0.7093 900
40 0.3 0.05 250 500 cosine 0.7376 0.7056 850
32 0.3 0.05 500 250 linear 0.7375 0.7093 800
26 0.3 0.1 500 250 cosine 0.7368 0.6981 550

Table 6.3: Model performances on unseen dev and unseen test.

Unseen Dev Unseen Test
Type Model Acc. AUROC Acc. AUROC

Baselines

Image-Region 61.48 53.54 60.28±0.18 54.64±0.80
Text BERT 60.37 60.88 63.60±0.54 62.65±0.40
Late Fusion 61.11 61.00 64.06±0.02 64.44±1.60
Concat BERT 64.81 65.42 65.90±0.82 66.28±0.66
MMBT-Grid 67.78 65.47 66.85±1.61 67.24±2.53
MMBT-Region 70.04 71.54 70.10±1.39 72.21±0.20
ViLBERT 69.26 72.73 70.86±0.70 73.39±1.32
VisualBERT 69.67 71.10 71.30±0.68 73.23±1.04
ViLBERT CC 70.37 70.78 70.03±1.07 72.78±0.50
VisualBERT COCO 70.77 73.70 69.95±1.06 74.59±1.56

Ours VisualBERT CCID=60 70.93 75.21 - -
VisualBERT CCensemble 74.23 79.26 76.50 81.08

46

6 .3 analysis

metrics – accuracy and AUROC. In addition, all the other models used in the ensem-
ble (Table 6.2) improve the baselines in terms of AUROC, where in terms of accuracy
only some models improve the best performing baseline model (VisualBERT COCO)
while others are at par or the difference is insignificant. Next, we answer a few possible
research questions.

Does using new image features help?
The VisualBERT model pre-trained on CC with pre-extracted default features (ID=1 in
Table 6.1) achieve AUROC score of 73.58, whereas the same model pre-trained on the
same dataset but using our own image features (ID=60 in Table 6.2) receives 75.21 AUROC.
Although hyper-parameter settings may differ in these two models during fine-tuning, we
observe that any model in the ensemble performs better than the aforementioned model,
which indicates that our features are better and complementary to the task. In this regard,
a recent study [116] presents a detailed study of improving visual representations for
V&L tasks. They argue that previous V&L research has focused primarily on improving
the multimodal fusion model and has neglected to improve the object detection model.
They empirically show that the new visual features extracted using their proposed object
detection model improve the performance across all V&L tasks, indicating that visual
features are essential in V&L models.

Does ensembling improve the score?
To answer this question we can compare the performances of the ensemble and best
performing model in the ensemble on unseen dev set. As seen in Table 6.3, the ensemble
performs significantly better than the best model in the ensemble, approximately an
improvement of %4 in terms of both accuracy and AUROC. This strategy, we argue,
effectively applies ensemble learning and produces one strong model from multiple
weak models, analogous to the concept of “bringing the experts of the experts together”.
Consider a model that is effective at detecting hate speech directed at women (i.e., an
expert in that regard), but not so good at detecting hate speech directed at religion. Then
there is the possibility of another specialist with the exact opposite knowledge. Using the
majority voting method, we can bring all of these experts together and benefit from them
as a whole.

How fast does the model adapt to the downstream task?
During hyper-parameter tuning we experimented with a diverse number of updates (or
iterations), ranging from 1k to 10k. Overall, the models did not improve after 2k iter-
ations. Therefore, we set the maximum number of iterations to 2k and noted the best
performing model as well as its best iteration. The right-most column in Table 6.2 shows
the iteration in which the model performed the best during validation. For example, the
best performing model (ID=60) achieves its best results after only 750 updates. The rest of
the models also peak in a similar number of updates. For this reason, we observe that the
models adapt to the downstream task fairly quick. Considering the fine-tuning dataset
size, it is expected that the models converge fast.

Lastly, we show a few model inferences on unseen test set. In Table 6.4, we show
how the majority voting technique is applied for those samples. For example, for the
meme with ID=23706 all the 27 models in the ensemble predicted that the meme is
hateful (class 1). Therefore, the meme is classified as class 1 (hateful) and the largest
probability amongst the models in the ensemble is assigned. In contrast, the smallest
probability is assigned for the samples that are classified as class 0 (not hateful).

47

experiments and results

(a) ID=04398 | Pred=0
(b) ID=58239 | Pred=0

(c) ID=10697 | Pred=1

(d) ID=23706 | Pred=1
(e) ID=13457 | Pred=0

(f) ID=53640 | Pred=1

(g) ID=12394 | Pred=1

(h) ID=32698 | Pred=1 (i) ID=65307 | Pred=0

(j) ID=19382 | Pred=1
(k) ID=65107 | Pred=1 (l) ID=93125 | Pred=0

(m) ID=34762 | Pred=0 (n) ID=46879 | Pred=0

Figure 6.1: VisualBERT CCensemble model inferences on unseen test set, where Pred=0
means the model predicts that the meme is not hateful, and 1 as hateful.

48

6 .3 analysis

Table 6.4: Majority Voting technique for VisualBERT CCensemble model on unseen test set.
For example, for the meme with ID=04398 all the 27 models predicted that the meme is
not hateful (class 0). Hence, the class of the sample is 0, with the smallest probability
amongst the 27 models.

of votes for Probability

Meme ID
not

hateful
(0)

hateful
(1)

Smallest Largest
New
Label

New
Probability

04398 27 0 6.7773E-06 7.4641E-03 0 6.7773E-06
58239 27 0 7.3150E-06 3.0126E-02 0 7.3150E-06
10697 1 26 8.6104E-02 9.9998E-01 1 9.9998E-01
23706 0 27 9.9611E-01 9.9999E-01 1 9.9999E-01
13457 17 10 1.0984E-04 9.9973E-01 0 1.0984E-04
53640 0 27 7.9756E-01 9.9997E-01 1 9.9997E-01
12394 13 14 1.4593E-04 9.9996E-01 1 9.9996E-01
32698 13 14 8.9907E-04 9.9996E-01 1 9.9996E-01
65307 14 13 1.1288E-03 9.9470E-01 0 1.1288E-03
19382 1 26 4.5838E-01 9.9998E-01 1 9.9998E-01
65107 4 23 1.1642E-02 9.9996E-01 1 9.9996E-01
93125 27 0 1.2231E-05 1.6519E-02 0 1.2230E-05
34762 26 1 2.1944E-05 7.2206E-01 0 2.1944E-05
46879 27 0 1.9846E-05 6.0324E-02 0 1.9846E-05

Figure 6.1 shows the memes with their ID’s and model predictions. We warn and
apologize to the reader that the figure includes offensive content. In this respect, memes
are shrunken to avoid any unexpected disturbance. Please zoom in for a clearer view.

Our model correctly classifies Figure 6.1a, Figure 6.1b, Figure 6.1d, Figure 6.1f, Fig-
ure 6.1l, and Figure 6.1n where all the models agree on the decision. Whereas for
Figure 6.1c, Figure 6.1i, and Figure 6.1m model fails to predict the correct class. For
Figure 6.1c, the model correctly classifies its image confounder (Figure 6.1d) but almost
all the models in the ensemble wrongly classify itself. On the other hand, the model mis-
classified Figure 6.1i while correctly classifying its text confounder (Figure 6.1j). Model
classifies Figure 6.1n correctly while misclassifying its image confounder (Figure 6.1m).
However, the model is capable of detecting hate speech directed at women (Figure 6.1k,
Figure 6.1l), and race (Figure 6.1e, Figure 6.1f).

49

7C O N C L U S I O N

The world around us and how we, as humans, perceive the world is multimodal. Build-
ing multimodal neural networks — AI systems that learn about concepts in multiple
modalities, especially the textual and visual domains, in order to better understand the
world — is a long-term goal of artificial intelligence. Hence, multimodal deep learning
plays a crucial role in this regard.

In this work, we proposed an approach detecting hate speech in internet memes
multimodally, i.e. considering visual and textual information holistically. We took part in
the Hateful Memes Challenge and placed third out of 3,173 participants. Our approach
utilizes a pre-trained VisualBERT (a BERT of vision and language), fine-tuned on an
expanded training dataset, finally applying Ensemble Learning. Our approach achieves
0.811 AUROC with an accuracy of 0.765 on the challenge test set, which is a considerable
result but also shows that we are still far from the accuracy of human judgement.

Understanding memes often requires subtle world knowledge. Rich intellectual infor-
mation (for example, understanding that the object is a vehicle but also that it is a “Tesla
Model S” or that the singer in the photo is “Dua Lipa”) would be extremely beneficial.
Given the dataset’s context, explicit knowledge of hate speech subject characteristics;
such as race and gender could also be beneficial; however, integrating such features in
practice poses significant ethical concerns.

The VisualBERT model does not consider the object tags gathered from object detec-
tion models while extracting image features. Providing this information to the model
would be beneficial (e.g. OSCAR [50]). Moreover, adding various vision-and-language
models in the ensemble would also be complementary to the task.

Lastly, investigating more into vision-and-language models, doing an in-depth analy-
sis (e.g., the analysis from OpenAI [29] for their model CLIP [71]) of what the models or
neurons learn could help to create better designed, well-suited models.

51

53

bibliography

B I B L I O G R A P H Y

[1] Aishwarya Agrawal et al. VQA: Visual Question Answering. 2016. arXiv: 1505.00468
[cs.CL].

[2] Peter Anderson et al. Bottom-Up and Top-Down Attention for Image Captioning and
Visual Question Answering. 2018. arXiv: 1707.07998 [cs.CV].

[3] Peter Anderson et al. Vision-and-Language Navigation: Interpreting visually-grounded
navigation instructions in real environments. 2018. arXiv: 1711.07280 [cs.CV].

[4] Stanislaw Antol et al. “Vqa: Visual question answering”. In: Proceedings of the IEEE
international conference on computer vision. 2015, pp. 2425–2433.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Transla-
tion by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

[6] L.E. Bahrick and R. Lickliter. Intersensory redundancy guides attentional selectivity
and perceptual learning in infancy. 2000.

[7] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal
Machine Learning: A Survey and Taxonomy. 2017. arXiv: 1705.09406 [cs.LG].

[8] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A
Review and New Perspectives. 2014. arXiv: 1206.5538 [cs.LG].

[9] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach. Learn.
Res. 3.null (2003), pp. 1137–1155.

[10] Hendrik Blockeel. “Hypothesis Space”. In: Encyclopedia of Machine Learning. Ed. by
Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 511–
513. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_373. url:
https://doi.org/10.1007/978-0-387-30164-8_373.

[11] Piotr Bojanowski et al. Enriching Word Vectors with Subword Information. 2017. arXiv:
1607.04606 [cs.CL].

[12] Samuel R. Bowman et al. A large annotated corpus for learning natural language
inference. 2015. arXiv: 1508.05326 [cs.CL].

[13] Andrew P Bradley. “The use of the area under the ROC curve in the evaluation
of machine learning algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–1159.

[14] Björn Brinne. 3D representation of a Transformer (BERT). [Online; accessed April 5,
2021]. 2020. url: https://peltarion.com/blog/data-science/illustration-
3d-bert.

[15] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
[cs.CL].

[16] Emanuele Bugliarello et al. Multimodal Pretraining Unmasked: Unifying the Vision
and Language BERTs. 2020. arXiv: 2011.15124 [cs.CL].

[17] Xinlei Chen et al. “Microsoft coco captions: Data collection and evaluation server”.
In: arXiv preprint arXiv:1504.00325 (2015).

[18] Yen-Chun Chen et al. UNITER: UNiversal Image-TExt Representation Learning. 2020.
arXiv: 1909.11740 [cs.CV].

55

https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1707.07998
https://arxiv.org/abs/1711.07280
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1705.09406
https://arxiv.org/abs/1206.5538
https://doi.org/10.1007/978-0-387-30164-8_373
https://doi.org/10.1007/978-0-387-30164-8_373
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1508.05326
https://peltarion.com/blog/data-science/illustration-3d-bert
https://peltarion.com/blog/data-science/illustration-3d-bert
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2011.15124
https://arxiv.org/abs/1909.11740

bibliography

[19] Sidney K. D’mello and Jacqueline Kory. “A Review and Meta-Analysis of Mul-
timodal Affect Detection Systems”. In: ACM Comput. Surv. 47.3 (2015). issn:
0360-0300. doi: 10.1145/2682899. url: https://doi.org/10.1145/2682899.

[20] Andrew M. Dai and Quoc V. Le. Semi-supervised Sequence Learning. 2015. arXiv:
1511.01432 [cs.LG].

[21] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

[22] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: (2019). arXiv: 1810.04805 [cs.CL].

[23] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. 2020. arXiv: 2010.11929 [cs.CV].

[24] Pedro F Felzenszwalb and Daniel P Huttenlocher. “Efficient graph-based image
segmentation”. In: International journal of computer vision 59.2 (2004), pp. 167–181.

[25] Matt Gardner et al. “Evaluating nlp models via contrast sets”. In: arXiv preprint
arXiv:2004.02709 (2020).

[26] Donald Geman et al. “Visual Turing test for computer vision systems”. In: Pro-
ceedings of the National Academy of Sciences 112.12 (2015), pp. 3618–3623. doi:
10.1073/pnas.1422953112. eprint: https://www.pnas.org/content/112/12/
3618.full.pdf. url: https://www.pnas.org/content/112/12/3618.

[27] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[28] Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. 2014. arXiv: 1311.2524 [cs.CV].

[29] Gabriel Goh et al. Multimodal Neurons in Artificial Neural Networks. https://
openai.com/blog/multimodal-neurons/. 2021.

[30] Yash Goyal et al. “Making the V in VQA Matter: Elevating the Role of Image
Understanding in Visual Question Answering”. In: (2017). arXiv: 1612.00837
[cs.CV].

[31] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. 2014. arXiv:
1410.5401 [cs.NE].

[32] W. Guo, J. Wang, and S. Wang. “Deep Multimodal Representation Learning: A
Survey”. In: IEEE Access 7 (2019), pp. 63373–63394. doi: 10.1109/ACCESS.2019.
2916887.

[33] Danna Gurari et al. VizWiz Grand Challenge: Answering Visual Questions from Blind
People. 2018. arXiv: 1802.08218 [cs.CV].

[34] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385 [cs.CV].

[35] Kaiming He et al. Mask R-CNN. 2018. arXiv: 1703.06870 [cs.CV].

[36] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. DenseCap: Fully Convolutional
Localization Networks for Dense Captioning. 2015. arXiv: 1511.07571 [cs.CV].

[37] A. Karpathy et al. “Large-Scale Video Classification with Convolutional Neural
Networks”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.
2014, pp. 1725–1732. doi: 10.1109/CVPR.2014.223.

56

https://doi.org/10.1145/2682899
https://doi.org/10.1145/2682899
https://arxiv.org/abs/1511.01432
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://doi.org/10.1073/pnas.1422953112
https://www.pnas.org/content/112/12/3618.full.pdf
https://www.pnas.org/content/112/12/3618.full.pdf
https://www.pnas.org/content/112/12/3618
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
https://openai.com/blog/multimodal-neurons/
https://openai.com/blog/multimodal-neurons/
https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1410.5401
https://doi.org/10.1109/ACCESS.2019.2916887
https://doi.org/10.1109/ACCESS.2019.2916887
https://arxiv.org/abs/1802.08218
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1511.07571
https://doi.org/10.1109/CVPR.2014.223

bibliography

[38] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating
Image Descriptions. 2015. arXiv: 1412.2306 [cs.CV].

[39] Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton. “Learning the difference
that makes a difference with counterfactually-augmented data”. In: arXiv preprint
arXiv:1909.12434 (2019).

[40] Sahar Kazemzadeh et al. “ReferItGame: Referring to Objects in Photographs
of Natural Scenes”. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 787–798. doi: 10.3115/v1/D14-1086. url: https:
//www.aclweb.org/anthology/D14-1086.

[41] Douwe Kiela et al. Supervised Multimodal Bitransformers for Classifying Images and
Text. 2020. arXiv: 1909.02950 [cs.CL].

[42] Douwe Kiela et al. “The Hateful Memes Challenge: Detecting Hate Speech in
Multimodal Memes”. In: arXiv preprint arXiv:2005.04790 (2020).

[43] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[44] Ranjay Krishna et al. “Visual genome: Connecting language and vision using
crowdsourced dense image annotations”. In: International journal of computer vision
123.1 (2017), pp. 32–73.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1. Red Hook, NY, USA:
Curran Associates Inc., 2012, pp. 1097–1105.

[46] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[47] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521
(May 2015), pp. 436–44. doi: 10.1038/nature14539.

[48] Yann LeCun et al. “Handwritten Digit Recognition with a Back-Propagation Net-
work”. In: Advances in Neural Information Processing Systems. Ed. by D. Touretzky.
Vol. 2. Morgan-Kaufmann, 1990. url: https://proceedings.neurips.cc/paper/
1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf.

[49] Liunian Harold Li et al. “Visualbert: A simple and performant baseline for vision
and language”. In: arXiv preprint arXiv:1908.03557 (2019).

[50] Xiujun Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language
Tasks. 2020. arXiv: 2004.06165 [cs.CV].

[51] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2015. arXiv:
1405.0312 [cs.CV].

[52] Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.
2021. arXiv: 2103.14030 [cs.CV].

[53] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019.
arXiv: 1711.05101 [cs.LG].

[54] Jiasen Lu et al. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for
Vision-and-Language Tasks. 2019. arXiv: 1908.02265 [cs.CV].

[55] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. 2015. arXiv: 1508.04025 [cs.CL].

57

https://arxiv.org/abs/1412.2306
https://doi.org/10.3115/v1/D14-1086
https://www.aclweb.org/anthology/D14-1086
https://www.aclweb.org/anthology/D14-1086
https://arxiv.org/abs/1909.02950
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://arxiv.org/abs/2004.06165
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1908.02265
https://arxiv.org/abs/1508.04025

bibliography

[56] Bryan McCann et al. Learned in Translation: Contextualized Word Vectors. 2018. arXiv:
1708.00107 [cs.CL].

[57] H. MCGURK and J MACDONALD. “Hearing lips and seeing voices”. In: Nature
264 (1976), pp. 764–786.

[58] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781 [cs.CL].

[59] Emilie Morvant, Amaury Habrard, and Stéphane Ayache. Majority Vote of Diverse
Classifiers for Late Fusion. 2014. arXiv: 1404.7796 [stat.ML].

[60] Jiquan Ngiam et al. “Multimodal Deep Learning”. In: ICML. 2011, pp. 689–696.
url: https://icml.cc/2011/papers/399_icmlpaper.pdf.

[61] J. T. Nockleby. “Hate speech”. In: Encyclopedia of the American Constitution. Vol. 3.
2000, pp. 1277–79.

[62] Yingwei Pan et al. Jointly Modeling Embedding and Translation to Bridge Video and
Language. 2015. arXiv: 1505.01861 [cs.CV].

[63] Georgios Paraskevopoulos et al. “Multiresolution and Multimodal Speech Recog-
nition with Transformers”. In: arXiv preprint arXiv:2004.14840 (2020).

[64] Letitia Parcalabescu, Nils Trost, and Anette Frank. What is Multimodality? 2021.
arXiv: 2103.06304 [cs.AI].

[65] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019. arXiv: 1912.01703 [cs.LG].

[66] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
url: https://www.aclweb.org/anthology/D14-1162.

[67] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global
Vectors for Word Representation”. In: Empirical Methods in Natural Language Pro-
cessing (EMNLP). 2014, pp. 1532–1543. url: http://www.aclweb.org/anthology/
D14-1162.

[68] Bryan A. Plummer et al. Flickr30k Entities: Collecting Region-to-Phrase Correspon-
dences for Richer Image-to-Sentence Models. 2016. arXiv: 1505.04870 [cs.CV].

[69] Kreiman G. et al. Quiroga R. Reddy L. “Invariant visual representation by single
neurons in the human brain”. In: Nature 435 (2005), pp. 1102–1107. doi: 10.1038/
nature03687. url: https://doi.org/10.1038/nature03687.

[70] A. Radford and Karthik Narasimhan. “Improving Language Understanding by
Generative Pre-Training”. In: 2018.

[71] Alec Radford et al. Learning Transferable Visual Models From Natural Language
Supervision. 2021. arXiv: 2103.00020 [cs.CV].

[72] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision Transformers for
Dense Prediction. 2021. arXiv: 2103.13413 [cs.CV].

[73] Rasa. Rasa Algorithm Whiteboard - Transformers & Attention 1: Self Attention. [On-
line; accessed April 9, 2021]. 2020. url: https://www.youtube.com/watch?v=
yGTUuEx3GkA.

58

https://arxiv.org/abs/1708.00107
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1404.7796
https://icml.cc/2011/papers/399_icmlpaper.pdf
https://arxiv.org/abs/1505.01861
https://arxiv.org/abs/2103.06304
https://arxiv.org/abs/1912.01703
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1505.04870
https://doi.org/10.1038/nature03687
https://doi.org/10.1038/nature03687
https://doi.org/10.1038/nature03687
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.13413
https://www.youtube.com/watch?v=yGTUuEx3GkA
https://www.youtube.com/watch?v=yGTUuEx3GkA

bibliography

[74] Scott Reed et al. Generative Adversarial Text to Image Synthesis. 2016. arXiv: 1605.
05396 [cs.NE].

[75] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

[76] Tekla S.Perry. Q&A: Facebook’s CTO Is at War With Bad Content, and AI Is His Best
Weapon. https://spectrum.ieee.org/computing/software/qa-facebooks-cto-
is-at-war-with-bad-content-and-ai-is-his-best-weapon. July 2020.

[77] Chhavi Sharma et al. “SemEval-2020 Task 8: Memotion Analysis–The Visuo-
Lingual Metaphor!” In: arXiv preprint arXiv:2008.03781 (2020).

[78] Piyush Sharma et al. “Conceptual captions: A cleaned, hypernymed, image alt-
text dataset for automatic image captioning”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018,
pp. 2556–2565.

[79] Ekaterina Shutova, Douwe Kiela, and Jean Maillard. “Black Holes and White
Rabbits: Metaphor Identification with Visual Features”. In: Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, California: Association for
Computational Linguistics, June 2016, pp. 160–170. doi: 10.18653/v1/N16-1020.
url: https://www.aclweb.org/anthology/N16-1020.

[80] Amanpreet Singh, Vedanuj Goswami, and Devi Parikh. “Are we pretraining
it right? Digging deeper into visio-linguistic pretraining”. In: arXiv preprint
arXiv:2004.08744 (2020).

[81] Amanpreet Singh et al. MMF: A multimodal framework for vision and language
research. 2020.

[82] L. Smith and M. Gasser. The development of embodied cognition: six lessons from
babies. 2005. doi: 10.1162/1064546053278973. url: https://doi.org/10.1162/
1064546053278973.

[83] Tejas Srinivasan et al. “Multimodal Speech Recognition with Unstructured Audio
Masking”. In: arXiv preprint arXiv:2010.08642 (2020).

[84] Weijie Su et al. VL-BERT: Pre-training of Generic Visual-Linguistic Representations.
2020. arXiv: 1908.08530 [cs.CV].

[85] Alane Suhr et al. “A Corpus for Reasoning About Natural Language Grounded
in Photographs”. In: (2019). arXiv: 1811.00491 [cs.CL].

[86] Ilya Sutskever. OpenAI Multimodal Research. [Online; accessed April 10, 2021]. 2021.
url: https://openai.com/blog/tags/multimodal/.

[87] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with
Neural Networks. 2014. arXiv: 1409.3215 [cs.CL].

[88] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.4842
[cs.CV].

[89] Hao Tan and Mohit Bansal. LXMERT: Learning Cross-Modality Encoder Representa-
tions from Transformers. 2019. arXiv: 1908.07490 [cs.CL].

[90] Ashish Vaswani et al. “Attention Is All You Need”. In: (2017). arXiv: 1706.03762
[cs.CL].

59

https://arxiv.org/abs/1605.05396
https://arxiv.org/abs/1605.05396
https://arxiv.org/abs/1506.01497
https://spectrum.ieee.org/computing/software/qa-facebooks-cto-is-at-war-with-bad-content-and-ai-is-his-best-weapon
https://spectrum.ieee.org/computing/software/qa-facebooks-cto-is-at-war-with-bad-content-and-ai-is-his-best-weapon
https://doi.org/10.18653/v1/N16-1020
https://www.aclweb.org/anthology/N16-1020
https://doi.org/10.1162/1064546053278973
https://doi.org/10.1162/1064546053278973
https://doi.org/10.1162/1064546053278973
https://arxiv.org/abs/1908.08530
https://arxiv.org/abs/1811.00491
https://openai.com/blog/tags/multimodal/
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1908.07490
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

bibliography

[91] Riza Velioglu and Jewgeni Rose. “Detecting Hate Speech in Memes Using Mul-
timodal Deep Learning Approaches: Prize-winning solution to Hateful Memes
Challenge”. In: (2020). arXiv: 2012.12975 [cs.AI].

[92] Valentin Vielzeuf et al. CentralNet: a Multilayer Approach for Multimodal Fusion.
2018. arXiv: 1808.07275 [cs.AI].

[93] Oriol Vinyals et al. Show and Tell: A Neural Image Caption Generator. 2015. arXiv:
1411.4555 [cs.CV].

[94] Weiyao Wang, Du Tran, and Matt Feiszli. What Makes Training Multi-Modal Classifi-
cation Networks Hard? 2020. arXiv: 1905.12681 [cs.CV].

[95] Wenhai Wang et al. Pyramid Vision Transformer: A Versatile Backbone for Dense
Prediction without Convolutions. 2021. arXiv: 2102.12122 [cs.CV].

[96] Lilian Weng. “The Transformer Family”. In: lilianweng.github.io/lil-log (2020). url:
https://lilianweng.github.io/lil- log/2020/03/27/the- transformer-
family.html.

[97] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. 2020. arXiv: 1910.03771 [cs.CL].

[98] Haiping Wu et al. CvT: Introducing Convolutions to Vision Transformers. 2021. arXiv:
2103.15808 [cs.CV].

[99] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation. 2016. arXiv: 1609.08144 [cs.CL].

[100] Zhiyong Wu, Lianhong Cai, and Helen Meng. “Multi-level Fusion of Audio and
Visual Features for Speaker Identification”. In: Advances in Biometrics. Ed. by David
Zhang and Anil K. Jain. Springer Berlin Heidelberg, 2005, pp. 493–499.

[101] Ning Xie et al. Visual Entailment Task for Visually-Grounded Language Learning. 2019.
arXiv: 1811.10582 [cs.CV].

[102] Ning Xie et al. Visual Entailment: A Novel Task for Fine-Grained Image Understanding.
2019. arXiv: 1901.06706 [cs.CV].

[103] Saining Xie et al. Aggregated Residual Transformations for Deep Neural Networks. 2017.
arXiv: 1611.05431 [cs.CV].

[104] J. Xu et al. “MSR-VTT: A Large Video Description Dataset for Bridging Video and
Language”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 5288–5296. doi: 10.1109/CVPR.2016.571.

[105] Kelvin Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention. 2016. arXiv: 1502.03044 [cs.LG].

[106] Tao Xu et al. AttnGAN: Fine-Grained Text to Image Generation with Attentional
Generative Adversarial Networks. 2017. arXiv: 1711.10485 [cs.CV].

[107] Xinchen Yan et al. Attribute2Image: Conditional Image Generation from Visual At-
tributes. 2016. arXiv: 1512.00570 [cs.LG].

[108] Quanzeng You et al. Image Captioning with Semantic Attention. 2016. arXiv: 1603.
03925 [cs.CV].

[109] Fei Yu et al. ERNIE-ViL: Knowledge Enhanced Vision-Language Representations
Through Scene Graph. 2021. arXiv: 2006.16934 [cs.CV].

[110] Licheng Yu et al. Modeling Context in Referring Expressions. 2016. arXiv: 1608.00272
[cs.CV].

60

https://arxiv.org/abs/2012.12975
https://arxiv.org/abs/1808.07275
https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1905.12681
https://arxiv.org/abs/2102.12122
https://lilianweng.github.io/lil-log/2020/03/27/the-transformer-family.html
https://lilianweng.github.io/lil-log/2020/03/27/the-transformer-family.html
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2103.15808
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1811.10582
https://arxiv.org/abs/1901.06706
https://arxiv.org/abs/1611.05431
https://doi.org/10.1109/CVPR.2016.571
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1711.10485
https://arxiv.org/abs/1512.00570
https://arxiv.org/abs/1603.03925
https://arxiv.org/abs/1603.03925
https://arxiv.org/abs/2006.16934
https://arxiv.org/abs/1608.00272
https://arxiv.org/abs/1608.00272

bibliography

[111] B. P. Yuhas, M. H. Goldstein, and T. J. Sejnowski. “Integration of acoustic and
visual speech signals using neural networks”. In: IEEE Communications Magazine
27.11 (1989), pp. 65–71. doi: 10.1109/35.41402.

[112] Tom Zahavy et al. Is a picture worth a thousand words? A Deep Multi-Modal Fu-
sion Architecture for Product Classification in e-commerce. 2016. arXiv: 1611.09534
[cs.CV].

[113] Savvas Zannettou et al. “On the origins of memes by means of fringe web
communities”. In: Proceedings of the Internet Measurement Conference 2018. 2018,
pp. 188–202.

[114] Rowan Zellers et al. “From Recognition to Cognition: Visual Commonsense
Reasoning”. In: (2019). arXiv: 1811.10830 [cs.CV].

[115] Chao Zhang et al. “Multimodal Intelligence: Representation Learning, Information
Fusion, and Applications”. In: IEEE Journal of Selected Topics in Signal Processing
14.3 (2020), pp. 478–493. doi: 10.1109/jstsp.2020.2987728. url: http://dx.
doi.org/10.1109/JSTSP.2020.2987728.

[116] Pengchuan Zhang et al. VinVL: Revisiting Visual Representations in Vision-Language
Models. 2021. arXiv: 2101.00529 [cs.CV].

[117] Yukun Zhu et al. Aligning Books and Movies: Towards Story-like Visual Explanations
by Watching Movies and Reading Books. 2015. arXiv: 1506.06724 [cs.CV].

61

https://doi.org/10.1109/35.41402
https://arxiv.org/abs/1611.09534
https://arxiv.org/abs/1611.09534
https://arxiv.org/abs/1811.10830
https://doi.org/10.1109/jstsp.2020.2987728
http://dx.doi.org/10.1109/JSTSP.2020.2987728
http://dx.doi.org/10.1109/JSTSP.2020.2987728
https://arxiv.org/abs/2101.00529
https://arxiv.org/abs/1506.06724

	Abstract
	Introduction
	Motivation
	Thesis Outline
	Contributions
	Publications

	Foundation/Background
	Transformers
	Self-Attention
	Multi-Head Attention
	Overall Architecture

	Basic Multimodal Models

	Multimodal Research
	Modality and Multimodality
	Multimodal Deep Learning
	Multimodal Fusion
	Vision and Language
	Models
	Training

	Hateful Memes Challenge and Dataset
	The Competition
	Task Formulation
	Metrics

	Dataset
	Benchmarking Multimodal Classification Models
	Models
	Results

	Methodology
	Dataset Expansion
	Image and Text Encoding
	Model – VisualBERT
	Training
	Pre-training
	Fine-tuning
	Classification

	Experiments and Results
	Experimental Setup
	Results
	Fine-tuned models
	Ensemble Learning

	Analysis

	Conclusion
	Bibliography

